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pyqg is a python solver for quasigeostrophic systems. Quasigeostophic equations are an approximation to the full
fluid equations of motion in the limit of strong rotation and stratification and are most applicable to geophysical fluid
dynamics problems.

Students and researchers in ocean and atmospheric dynamics are the intended audience of pyqg. The model is simple
enough to be used by students new to the field yet powerful enough for research. We strive for clear documentation and
thorough testing.

pyqg supports a variety of different configurations using the same computational kernel. The different configurations
are evolving and are described in detail in the documentation. The kernel, implement in cython, uses a pseudo-spectral
method which is heavily dependent of the fast Fourier transform. For this reason, pyqg tries to use pyfftw and the
FFTW Fourier Transform library. (If pyfftw is not available, it falls back on numpy.fft) With pyfftw, the kernel is
multi-threaded but does not support mpi. Optimal performance will be achieved on a single system with many cores.
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1.1 Installation

1.1.1 Requirements

The only requirements are

• Python (3.6 or later)

• numpy (1.6 or later)

• Cython (0.2 or later)

Because pyqg is a pseudo-spectral code, it realies heavily on fast-Fourier transforms (FFTs), which are the main per-
formance bottlneck. For this reason, we try to use fftw (a fast, multithreaded, open source C library) and pyfftw (a
python wrapper around fftw). These packages are optional, but they are strongly recommended for anyone doing high-
resolution, numerically demanding simulations.

• fftw (3.3 or later)

• pyfftw (0.9.2 or later)

If pyqg can’t import pyfftw at compile time, it can fall back on numpy’s fft routines. Note that the numpy_ fallback
requires a local install (see [below](#installing-pyqg)).

PyQG can also conveniently store model output data as an xarray dataset. The feature (which is used in some of the
examples in this documentation) requires xarray.

1.1.2 Instructions

The easiest and quickest way: installing pyqg with conda

We suggest that you install pyqg using conda. This will automatically install pyfftw as well, so then you will be done
and can ignore the remaining instructions on this page. To install pyqg with conda,

$ conda install -c conda-forge pyqg

3
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http://github.com/hgomersall/pyFFTW
http://www.numpy.org/
http://xarray.pydata.org/en/stable/
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Alternatives

In our opinion, the best way to get python and numpy is to use a distribution such as Anaconda (recommended) or
Canopy. These provide robust package management and come with many other useful packages for scientific comput-
ing. The pyqg developers are mostly using anaconda.

Note: If you don’t want to use pyfftw and are content with numpy’s slower performance, you can skip ahead to
Installing pyqg.

Installing fftw and pyfftw can be slightly painful. Hopefully the instructions below are sufficient. If not, please send
feedback.

Installing fftw and pyfftw

Once you have installed pyfftw via one of these paths, you can proceed to Installing pyqg.

The easy way: installing with conda

If you are using Anaconda, we have discovered that you can easily install pyffw using the conda command. Although
pyfftw is not part of the main Anaconda distribution, it is distributed as a conda pacakge through several user channels.

There is a useful blog post describing how the pyfftw conda package was created. There are currently 13 pyfftw user
packages hosted on anaconda.org. Each has different dependencies and platform support (e.g. linux, windows, mac.)
The conda-forge version is the most popular and appears to have the broadest cross-platform support. To install it, open
a terminal and run the command

$ conda install -c conda-forge pyfftw

The hard way: installing from source

This is the most difficult step for new users. You will probably have to build FFTW3 from source. However, if you are
using Ubuntu linux, you can save yourself some trouble by installing fftw using the apt package manager

$ sudo apt-get install libfftw3-dev libfftw3-doc

Otherwise you have to build FFTW3 from source. Your main resource for the FFTW homepage. Below we summarize
the steps

First download the source code.

$ wget http://www.fftw.org/fftw-3.3.4.tar.gz
$ tar -xvzf fftw-3.3.4.tar.gz
$ cd fftw-3.3.4

Then run the configure command

$ ./configure --enable-threads --enable-shared

Note: If you don’t have root privileges on your computer (e.g. on a shared cluster) the best approach is to ask your
system administrator to install FFTW3 for you. If that doesn’t work, you will have to install the FFTW3 libraries

4 Chapter 1. Contents
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into a location in your home directory (e.g. $HOME/fftw) and add the flag --prefix=$HOME/fftw to the configure
command above.

Then build the software

$ make

Then install the software

$ sudo make install

This will install the FFTW3 libraries into you system’s library directory. If you don’t have root privileges (see note
above), remove the sudo. This will install the libraries into the prefix location you specified.

You are not done installing FFTW yet. pyfftw requires special versions of the FFTW library specialized to different
data types (32-bit floats and double-long floars). You need to-configure and re-build FFTW two more times with extra
flags.

$ ./configure --enable-threads --enable-shared --enable-float
$ make
$ sudo make install
$ ./configure --enable-threads --enable-shared --enable-long-double
$ make
$ sudo make install

At this point, you FFTW installation is complete. We now move on to pyfftw. pyfftw is a python wrapper around the
FFTW libraries. The easiest way to install it is using pip:

$ pip install pyfftw

or if you don’t have root privileges

$ pip install pyfftw --user

If this fails for some reason, you can manually download and install it according to the instructions on github. First
clone the repository:

$ git clone https://github.com/hgomersall/pyFFTW.git

Then install it

$ cd pyFFTW
$ python setup.py install

or

$ python setup.py install --user

if you don’t have root privileges. If you installed FFTW in a non-standard location (e.g. $HOME/fftw), you might have
to do something tricky at this point to make sure pyfftw can find FFTW. (I figured this out once, but I can’t remember
how.)

1.1. Installation 5
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Installing pyqg

Note: The pyqg kernel is written in Cython and uses OpenMP to parallelise some operations for a performance boost.
If you are using Mac OSX Yosemite or later OpenMP support is not available out of the box. While pyqg will still
run without OpenMP, it will not be as fast as it can be. See Installing with OpenMP support on OSX below for more
information on installing on OSX with OpenMP support.

With pyfftw installed, you can now install pyqg. The easiest way is with pip:

$ pip install pyqg

You can also clone the pyqg git repository to use the latest development version.

$ git clone https://github.com/pyqg/pyqg.git

Then install pyqg locally on your system:

$ cd pyqg && pip install --editable .

This will also allow you to make and test changes to the library. pyqg is a work in progress, and we really encourage
users to contribute to its Development

Note that due to Cython build considerations, this local install method is required if you do not wish to use pyfftw.

Installing with OpenMP support on OSX

There are two options for installing on OSX with OpenMP support. Both methods require using the Anaconda distri-
bution of Python.

1. Using Homebrew

Install the GCC-5 compiler in /usr/local using Homebrew:

$ brew install gcc --without-multilib --with-fortran

Install Cython from the conda repository

$ conda install cython

Install pyqg using the homebrew gcc compiler

$ CC=/usr/local/bin/gcc-5 pip install pyqg

2. Using the HPC precompiled gcc binaries.

The HPC for Mac OSX sourceforge project has copies of the latest gcc precompiled for Mac OSX. Download the latest
version of gcc from the HPC site and follow the installation instructions.

Install Cython from the conda repository

$ conda install cython

Install pyqg using the HPC gcc compiler

6 Chapter 1. Contents
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$ CC=/usr/local/bin/gcc pip install pyqg

1.2 Equations Solved

A detailed description of the equations solved by the various pyqg models

1.2.1 Equations For Two-Layer QG Model

The two-layer quasigeostrophic evolution equations are (1)

𝜕𝑡 𝑞1 + J (𝜓1 , 𝑞1) + 𝛽 𝜓1𝑥 = ssd ,

and (2)

𝜕𝑡 𝑞2 + J (𝜓2 , 𝑞2) + 𝛽 𝜓2𝑥 = −𝑟𝑒𝑘∇2𝜓2 + ssd ,

where the horizontal Jacobian is J (𝐴 ,𝐵) = 𝐴𝑥𝐵𝑦−𝐴𝑦𝐵𝑥. Also in (1) and (2) ssd denotes small-scale dissipation (in
turbulence regimes, ssd absorbs enstrophy that cascades towards small scales). The linear bottom drag in (2) dissipates
large-scale energy.

The potential vorticities are (3)

𝑞1 = ∇2𝜓1 + 𝐹1 (𝜓2 − 𝜓1) ,

and (4)

𝑞2 = ∇2𝜓2 + 𝐹2 (𝜓1 − 𝜓2) ,

where

𝐹1 ≡ 𝑘2𝑑
1 + 𝛿

, and 𝐹2 ≡ 𝛿 𝐹1 ,

with the deformation wavenumber

𝑘2𝑑 ≡ 𝑓20
𝑔′
𝐻1 +𝐻2

𝐻1𝐻2
,

where 𝐻 = 𝐻1 +𝐻2 is the total depth at rest.

Forced-dissipative equations

We are interested in flows driven by baroclinic instabilty of a base-state shear 𝑈1 − 𝑈2. In this case the evolution
equations (1) and (2) become (5)

𝜕𝑡 𝑞1 + J (𝜓1 , 𝑞1) + 𝛽1 𝜓1𝑥 = ssd ,

and (6)

𝜕𝑡 𝑞2 + J (𝜓2 , 𝑞2) + 𝛽2 𝜓2𝑥 = −𝑟𝑒𝑘∇2𝜓2 + ssd ,

where the mean potential vorticity gradients are (9,10)

𝛽1 = 𝛽 + 𝐹1 (𝑈1 − 𝑈2) , and 𝛽2 = 𝛽 − 𝐹2 (𝑈1 − 𝑈2) .

1.2. Equations Solved 7
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Equations in Fourier space

We solve the two-layer QG system using a pseudo-spectral doubly-peridioc model. Fourier transforming the evolution
equations (5) and (6) gives (7)

𝜕𝑡 ̂︀𝑞1 = −̂︀J (𝜓1 , 𝑞1) − i 𝑘 𝛽1 ̂︀𝜓1 + ̂︁ssd ,
and

𝜕𝑡 ̂︀𝑞2 = −̂︀J (𝜓2 , 𝑞2) − i 𝑘 𝛽2 ̂︀𝜓2 + 𝑟𝑒𝑘 𝜅
2 ̂︀𝜓2 + ̂︁ssd ,

where, in the pseudo-spectral spirit, ̂︀J means the Fourier transform of the Jacobian i.e., we compute the products in
physical space, and then transform to Fourier space.

In Fourier space the “inversion relation” (3)-(4) is[︂
−(𝜅2 + 𝐹1) 𝐹1

𝐹2 − (𝜅2 + 𝐹2)

]︂
⏟  ⏞  

≡M2

[︃ ̂︀𝜓1̂︀𝜓2

]︃
=

[︂̂︀𝑞1̂︀𝑞2
]︂
,

or equivalently [︃ ̂︀𝜓1̂︀𝜓2

]︃
=

1

det M2

[︂
−(𝜅2 + 𝐹2) − 𝐹1

−𝐹2 − (𝜅2 + 𝐹1)

]︂
⏟  ⏞  

=M2
−1

[︂̂︀𝑞1̂︀𝑞2
]︂
,

where

detM2 = 𝜅2
(︀
𝜅2 + 𝐹1 + 𝐹2

)︀
.

Marching forward

We use a third-order Adams-Bashford scheme

̂︀𝑞𝑛+1
𝑖 = 𝐸𝑓 ×

[︂̂︀𝑞𝑛𝑖 +
∆𝑡

12

(︁
23 ̂︀𝑄𝑛

𝑖 − 16 ̂︀𝑄𝑛−1
𝑖 + 5 ̂︀𝑄𝑛−2

𝑖

)︁]︂
,

where

̂︀𝑄𝑛
𝑖 ≡ −̂︀J (𝜓𝑛

𝑖 , 𝑞
𝑛
𝑖 ) − i 𝑘 𝛽𝑖 ̂︀𝜓𝑛

𝑖 , 𝑖 = 1, 2 .

The AB3 is initialized with a first-order AB (or forward Euler)

̂︀𝑞1𝑖 = 𝐸𝑓 ×
[︁̂︀𝑞0𝑖 + ∆𝑡 ̂︀𝑄0

𝑖

]︁
,

The second step uses a second-order AB scheme

̂︀𝑞2𝑖 = 𝐸𝑓 ×
[︂̂︀𝑞1𝑖 +

∆𝑡

2

(︁
3 ̂︀𝑄1

𝑖 − ̂︀𝑄0
𝑖

)︁]︂
.

The small-scale dissipation is achieve by a highly-selective exponential filter

𝐸𝑓 =

{︃
e−23.6 (𝜅⋆−𝜅𝑐)

4

: 𝜅 ≥ 𝜅𝑐

1 : otherwise .

8 Chapter 1. Contents



pyqg Documentation, Release 0.7.3.dev0

where the non-dimensional wavenumber is

𝜅⋆ ≡
√︀

(𝑘∆𝑥)2 + (𝑙∆𝑦)2 ,

and 𝜅𝑐 is a (non-dimensional) wavenumber cutoff here taken as 65% of the Nyquist scale 𝜅⋆𝑛𝑦 = 𝜋. The parameter
−23.6 is obtained from the requirement that the energy at the largest wanumber (𝜅⋆ = 𝜋) be zero whithin machine
double precision:

log 10−15

(0.35𝜋)4
≈ −23.5 .

For experiments with |̂︀𝑞𝑖| ≪ 𝒪(1) one can use a smaller constant.

Diagnostics

The kinetic energy is

𝐸 = 1
𝐻 𝑆

∫︁
1
2𝐻1 |∇𝜓1|2 + 1

2𝐻2 |∇𝜓2|2 𝑑𝑆 .

The potential enstrophy is

𝑍 = 1
𝐻 𝑆

∫︁
1
2𝐻1 𝑞

2
1 + 1

2𝐻2 𝑞
2
2 𝑑𝑆 .

We can use the enstrophy to estimate the eddy turn-over timescale

𝑇𝑒 ≡
2𝜋√
𝑍
.

1.2.2 Layered quasi-geostrophic model

Consider an 𝑁 -layer quasi-geostrophic (QG) model with rigid lid and flat topography (for reference, see Eq. 5.85 in
Vallis, 2017). The 𝑁 -layer QG potential vorticity is

𝑞1 = ∇2𝜓1 +
𝑓20
𝐻1

(︂
𝜓2 − 𝜓1

𝑔′1

)︂
,

𝑞𝑛 = ∇2𝜓𝑛 +
𝑓20
𝐻𝑛

(︂
𝜓𝑛−1 − 𝜓𝑛

𝑔′𝑛−1

− 𝜓𝑛 − 𝜓𝑛+1

𝑔′𝑛

)︂
, 𝑛 = 2, . . . , 𝑁 − 1 ,

𝑞𝑁 = ∇2𝜓𝑁 +
𝑓20
𝐻𝑁

(︂
𝜓𝑁−1 − 𝜓𝑁

𝑔′𝑁−1

)︂
,

where 𝑞𝑛 is the n-th layer QG potential vorticity, and 𝜓𝑛 is the streamfunction, 𝑓0 is the inertial frequency, 𝐻𝑛 is the
layer depth. Also the n-th buoyancy jump (reduced gravity) is

𝑔′𝑛 ≡ 𝑔
𝜌𝑛+1 − 𝜌𝑛

𝜌𝑛
,

where 𝑔 is the acceleration due to gravity and 𝜌𝑛 is the layer density.

The relationship between 𝑞𝑛 and 𝜓𝑛 can be conveniently written as

q = (S + ∇2I)𝜓

1.2. Equations Solved 9
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where q = (𝑞1, ..., 𝑞𝑁 )T, 𝜓 = (𝜓1, ..., 𝜓𝑁 )T, I is the 𝑁 ×𝑁 identity matrix, and the stretching matrix S is

S ≡ 𝑓20

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

𝐻1𝑔′1

1

𝐻1𝑔′1
0 0 ...

...
...

...
1

𝐻𝑛𝑔′𝑛−1

− 1

𝐻𝑛

(︂
1

𝑔′𝑛−1

+
1

𝑔′𝑛

)︂
1

𝐻𝑛𝑔′𝑛
...

...
...

... 0 0
1

𝐻𝑁𝑔′𝑁−1

− 1

𝐻𝑁𝑔′𝑁−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The dynamics of the system is given by the evolution of PV. In particular, we assume a background flow with background
velocity

−→
𝑉 = (𝑈, 𝑉 ) such that

𝑢tot
𝑛 = 𝑈𝑛 − 𝜓𝑛𝑦,

𝑣tot
𝑛 = 𝑉𝑛 + 𝜓𝑛𝑥,

and

𝑞tot
𝑛 = 𝑄𝑛 + 𝑞𝑛,

where 𝑄𝑛 is the n-th layer background PV. 𝑄𝑛 satisfies

Q = 𝛽 + SV𝑥− SU𝑦,

where Q, U, V are defined similarly to q and 𝜓. We then obtain the evolution equations

𝑞𝑛𝑡 + J(𝜓𝑛, 𝑞𝑛) +
−→
𝑉 𝑛 · ∇𝑞𝑛 +𝑄𝑛𝑦𝜓𝑛𝑥 −𝑄𝑛𝑥𝜓𝑛𝑦 = ssd𝑛 − 𝑟𝑒𝑘𝛿𝑛,𝑁∇2𝜓𝑛, 𝑛 = 1, . . . , 𝑁,

where ssd stands for small-scale dissipation, which is achieved by an spectral exponential filter or hyperviscosity, and
𝑟𝑒𝑘 is the linear bottom drag coefficient. The Dirac delta, 𝛿𝑛,𝑁 , indicates that the drag is only applied to the bottom
layer. The advection of the background PV by the background flow is neglected because in each layer, the contribution
of this term is constant for all locations.

Equations in spectral space

The evolution equation in spectral space is

𝑞𝑛𝑡 + Ĵ(𝜓𝑛, 𝑞𝑛) + (i𝑘𝑈𝑛 + i𝑙𝑉𝑛)𝑞𝑛

+ (i𝑘 𝑄𝑛𝑦 − i𝑙 𝑄𝑛𝑥)𝜓𝑛 = ̂︁ssd𝑛 + 𝑟𝑒𝑘𝛿𝑛,𝑁𝜅
2𝜓𝑛, 𝑛 = 1, . . . , 𝑁,

where 𝜅2 = 𝑘2 + 𝑙2. Also, in the pseudo-spectral spirit, we write the transform of the nonlinear terms and the non-
constant coefficient linear term as the transform of the products, calculated in physical space, as opposed to double
convolution sums. That is, Ĵ is the Fourier transform of Jacobian computed in the physical space.

The inversion relationship between PV and streamfunction is

q̂ =
(︀
S− 𝜅2I

)︀
𝜓̂.

10 Chapter 1. Contents



pyqg Documentation, Release 0.7.3.dev0

Energy spectrum

The equation for the energy spectrum is,

𝐸(𝑘, 𝑙) ≡ 1

2𝐻

N∑︁
𝑛=1

𝐻𝑛𝜅
2|𝜓𝑛|

2
+

1

2𝐻

N−1∑︁
𝑛=1

𝑓20
𝑔′𝑛

|𝜓𝑛 − 𝜓𝑛+1|2,

To obtain the spectral flux of different components, we take the time derivative of the energy spectrum

𝜕𝐸(𝑘, 𝑙)

𝜕𝑡
=

1

𝐻
R

[︃
𝑁∑︁

𝑛=1

𝐻𝑛𝜅
2 𝜕𝜓𝑛

𝜕𝑡
𝜓*
𝑛 +

𝑁−1∑︁
𝑛=1

𝑓20
𝑔′𝑛

(︃
𝜕𝜓𝑛

𝜕𝑡
− 𝜕𝜓𝑛+1

𝜕𝑡

)︃
(𝜓*

𝑛 − 𝜓*
𝑛+1)

]︃

= − 1

𝐻
R

[︃
𝑁∑︁

𝑛=1

𝐻𝑛𝜓
*
𝑛

𝜕

𝜕𝑡

(︃
−𝜅2𝜓𝑛 +

𝑓20
𝐻𝑛

𝜓𝑛−1 − 𝜓𝑛

𝑔′𝑛−1

1𝑛>1 −
𝑓20
𝐻𝑛

𝜓𝑛 − 𝜓𝑛+1

𝑔′𝑛
1𝑛<𝑁

)︃]︃

= − 1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R
[︁
𝜓*
𝑛𝑞𝑛𝑡

]︁
,

where 1 is the indicator function. This suggests that the energy tendency of the layered QG system is just the dot
product of the layer-weighted streamfunction and the tendency of QG potential vorticty. Substituting the expression of
𝑞𝑛𝑡 from above, we have

𝜕𝐸(𝑘, 𝑙)

𝜕𝑡
=

1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R[𝜓*
𝑛Ĵ(𝜓𝑛,∇2𝜓𝑛)] +

1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R[𝜓*
𝑛Ĵ(𝜓𝑛, (S𝜓)𝑛)]

+
1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛(𝑘𝑈𝑛 + 𝑙𝑉𝑛)R[𝑖 𝜓*
𝑛(S𝜓̂)𝑛] − 𝑟𝑒𝑘

𝐻𝑁

𝐻
𝜅2|𝜓𝑁 |2

− 1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R[𝜓*
𝑛
̂︁ssd𝑛],

where * stands for complex conjugation. We also used the fact that the terms involving background vorticity gradients
does not make contribution to the real part of the right-hand-side. The right-hand-side terms represent, from left to
right,

I: The spectral divergence of the kinetic energy flux;

II: The spectral divergence of the potential energy flux;

III: The spectrum of the potential energy generation;

IV: The spectrum of the energy dissipation by linear bottom drag;

V: The spectrum of energy loss due to small scale dissipation.

We assume that the fifth term is relatively small, and that, in statistical steady state, the budget above is dominated by
I through IV.

Contribution from subgrid parameterization

Subgrid-scale parameterizations in terms of tendencies in 𝑞 can be added to the dynamical equation, and thus has
contribution to the energy spectrum. In spectral space, let the effect of parameterization be(︂

𝜕𝑞𝑛
𝜕𝑡

)︂sub

= ˆ̇𝑞sub
𝑛

1.2. Equations Solved 11
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From the derivations above, we have(︂
𝜕𝐸(𝑘, 𝑙)

𝜕𝑡

)︂sub

= − 1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R
[︁
𝜓*
𝑛

ˆ̇𝑞sub
𝑛

]︁
,

which is the spectrum of the energy contribution from parameterizations.

We can further expand the contribution of parameterization into its contribution to kinetic energy and potential energy.
To see how, we consider again the time derivative of the total energy in matrix form:

𝜕𝐸(𝑘, 𝑙)

𝜕𝑡
= − 1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R

[︃
𝜓*
𝑛

(︃
(−𝜅2I + S)

𝜕𝜓̂

𝜕𝑡

)︃
𝑛

]︃
,

where the first term on the right-hand side is the change in kinetic energy, and the second term is the change in potential
energy. Considering the streamfunction tendency is from parameterizations, and letting A(k) = (S− 𝜅2I)−1 so that
𝜓̂ = A(k)q̂, we have(︂

𝜕𝐸(𝑘, 𝑙)

𝜕𝑡

)︂sub

=
1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R
[︁
𝜅2𝜓*

𝑛

(︁
Aˆ̇qsub

)︁
𝑛

]︁
− 1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R
[︁
𝜓*
𝑛

(︁
SAˆ̇qsub

)︁
𝑛

]︁
(1.1)

where on the right-hand side, the first term is the parameterized contribution towards kinetic energy, and the second
term is towards potential energy.

Enstrophy spectrum

Similarly, the evolution of the barotropic enstrophy spectrum,

𝑍(𝑘, 𝑙) ≡ 1

2𝐻

N∑︁
𝑛=1

𝐻𝑛|𝑞𝑛|2,

is governed by

𝜕𝑍(𝑘, 𝑙)

𝜕𝑡
=

1

𝐻

N∑︁
𝑛=1

R
[︁
𝑞*𝑛Ĵ(𝜓𝑛, 𝑞𝑛)

]︁
+

1

𝐻

N∑︁
𝑛=1

(𝑙𝑄𝑛𝑥 − 𝑘𝑄𝑛𝑦)R
[︁
𝑖(S𝜓̂

*
)𝑛𝜓𝑛

]︁
+ 𝑟𝑒𝑘

𝐻𝑁

𝐻
𝜅2R

[︁
𝑞*𝑁𝜓𝑁

]︁
+

1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R[𝑞*𝑛̂︁ssd𝑛],

where the terms above on the right represent, from left to right,

I: The spectral divergence of barotropic potential enstrophy flux;

II: The spectrum of barotropic potential enstrophy generation;

III: The spectrum of barotropic potential enstrophy loss due to bottom friction;

IV: The spectrum of barotropic potential enstrophy loss due to small scale dissipation.

The enstrophy dissipation is concentrated at the smallest scales resolved in the model and, in statistical steady state, we
expect the budget above to be dominated by the balance between I and II.
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1.2.3 Special case: two-layer model

With 𝑁 = 2 (see Equations For Two-Layer QG Model), an alternative notation for the perturbation of potential vor-
ticities can be written as

𝑞1 = ∇2𝜓1 + 𝐹1(𝜓2 − 𝜓1)

𝑞2 = ∇2𝜓2 + 𝐹2(𝜓1 − 𝜓2) ,

where we use the following definitions where

𝐹1 ≡ 𝑘2𝑑
1 + 𝛿

, and 𝐹2 ≡ 𝛿 𝐹1 ,

with the deformation wavenumber

𝑘2𝑑 ≡ 𝑓20
𝑔

𝐻1 +𝐻2

𝐻1𝐻2
.

With this notation, the stretching matrix is simply

S =

[︂
−𝐹1 𝐹1

𝐹2 −𝐹2

]︂
.

The inversion relationship in Fourier space is(︃̂︀𝜓1̂︀𝜓2

)︃
= − 1

𝜅2(𝜅2 + 𝐹1 + 𝐹2)

[︂
𝜅2 + 𝐹2 𝐹1

𝐹2 𝜅2 + 𝐹1

]︂(︂̂︀𝑞1̂︀𝑞2
)︂
.

Substituting the inversion relationship to the rate of change of the energy spectrum above, we have

𝜕𝐸(𝑘, 𝑙)

𝜕𝑡
=R

[︃
(𝛿1𝜓

*
1 , 𝛿2𝜓

*
2) ·

(︃
𝐽(𝜓1, 𝑞1) + 𝑖𝑘𝛽1𝜓1 + 𝑖𝑘𝑈1𝑞1

𝐽(𝜓2, 𝑞2) + 𝑖𝑘𝛽2𝜓2 + 𝑖𝑘𝑈2𝑞2 − 𝑟𝑒𝑘𝜅
2𝜓2

)︃]︃

=

2∑︁
𝑛=1

𝛿𝑛R
[︁
𝜓*
𝑛𝐽(𝜓𝑛,∇2𝜓𝑛)

]︁
+ 𝛿1𝐹1R

[︁
(𝜓*

1 − 𝜓*
2)𝐽(𝜓1, 𝜓2)

]︁
+ 𝛿1𝐹1𝑘(𝑈1 − 𝑈2)R

[︁
𝑖𝜓*

1𝜓2

]︁
− 𝑟𝑒𝑘𝛿2𝜅

2|𝜓2|2,

in which the right-hand-side terms are, from left to right, the spectral divergence of kinetic energy flux, the spectral
divergence of potential energy flux, the spectrum of available potential energy generation, and the spectral contribution
by bottom drag. Note that we neglected the contribution from eddy viscosity (spectral filter), but they have the same
form as the multi-layer case above.

1.2.4 Vertical modes

Standard vertical modes, , p𝑛(𝑧), are the eigenvectors of the “stretching matrix”

S p𝑛 = −𝑅−2
𝑛 p𝑛 ,

where the𝑅𝑛 is by definition the n’th deformation radius (e.g., Flierl 1978). These orthogonal modes p𝑛 are normalized
to have unitary 𝐿2-norm

1

𝐻

∫︁ 0

−𝐻

p𝑛p𝑚d𝑧 = 𝛿𝑛𝑚 ,

where 𝛿𝑚𝑛.
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1.2.5 Linear stability analysis

With ℎ𝑏 = 0, the linear eigenproblem is

AΦ = 𝜔 BΦ ,

where

A ≡ B(U 𝑘 + V 𝑙) + I (𝑘Q𝑦 − 𝑙Q𝑥) + I 𝛿NN i 𝑟𝑒𝑘 𝜅
2 ,

where 𝛿NN = [0, 0, . . . , 0, 1] , and

B ≡ S− I𝜅2 .

The growth rate is Im{𝜔}.

1.2.6 Equations For Equivalent Barotropic QG Model

The equivalent barotropic quasigeostrophy evolution equations is

𝜕𝑡 𝑞 + J (𝜓 , 𝑞) + 𝛽 𝜓𝑥 = ssd .

The potential vorticity anomaly is

𝑞 = ∇2𝜓 − 𝜅2𝑑𝜓 ,

where 𝜅2𝑑 is the deformation wavenumber. With 𝜅𝑑 = 𝛽 = 0 we recover the 2D vorticity equation.

The inversion relationship in Fourier space is

̂︀𝑞 = −
(︀
𝜅2 + 𝜅2𝑑

)︀ ̂︀𝜓 .
The system is marched forward in time similarly to the two-layer model.

1.2.7 Surface Quasi-geostrophic Model

Surface quasi-geostrophy (SQG) is a relatively simple model that describes surface intensified flows due to buoyancy.
One of it’s advantages is that it only has two spatial dimensions but describes a three-dimensional solution.

The evolution equation is

𝜕𝑡𝑏+ J(𝜓, 𝑏) = 0 , at 𝑧 = 0 ,

where 𝑏 = 𝜓𝑧 is the buoyancy.

The interior potential vorticity is zero. Hence

𝜕

𝜕𝑧

(︂
𝑓20
𝑁2

𝜕𝜓

𝜕𝑧

)︂
+ ∇2𝜓 = 0 ,

where 𝑁 is the buoyancy frequency and 𝑓0 is the Coriolis parameter. In the SQG model both 𝑁 and 𝑓0 are constants.
The boundary conditions for this elliptic problem in a semi-infinite vertical domain are

𝑏 = 𝜓𝑧 , and 𝑧 = 0 ,
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and

𝜓 = 0, at 𝑧 → −∞ .

The solutions to the elliptic problem above*, in horizontal Fourier space, gives the inversion relationship between
surface buoyancy and surface streamfunction

̂︀𝜓 =
𝑓0
𝑁

1

𝜅
̂︀𝑏 , at 𝑧 = 0 .

The SQG evolution equation is marched forward similarly to the two-layer model.

* Since understanding this step is key to making your own modifications to the model, in more detail:

𝜕

𝜕𝑧

(︂
𝑓20
𝑁2

𝜕𝜓(𝑥, 𝑦, 𝑧)

𝜕𝑧

)︂
+ ∇2𝜓(𝑥, 𝑦, 𝑧) = 0

Taking the Fourier transform in the x and y directions with 𝜅2 = 𝑘2 + 𝑙2 we get

𝑓20
𝑁2

𝜕

𝜕𝑧

(︃
𝜕𝜓

𝜕𝑧

)︃
= 𝜅2𝜓 ,

which has solution

𝜓 = 𝐴𝑒
𝜅𝑁
𝑓0

𝑧 +𝐵𝑒−
𝜅𝑁
𝑓0

𝑧, .

Our decay at negative infinity immediately tells us that 𝐵 = 0. Differentiating with respect to 𝑧 and evaluating at the
surface tells us 𝐴 = 𝑓0𝑏̂/𝜅𝑁 so that we have:

𝜓(𝑘, 𝑙, 𝑧) =
𝑓0
𝑁

1

𝜅
𝑏̂(𝑘, 𝑙, 𝑧)𝑒

𝜅𝑁
𝑓0

𝑧, .

Evaluating at 𝑧 = 0 gives the inversion relation given above.

1.2.8 Parameterizations

pyqg support parameterizations, which are functions that take a pyqg.Model and return an additional term to add to
its potential vorticity tendency every timestep (or two terms to add to each velocity tendency, in which case we apply
them to PV after taking their curl). Typically, parameterizations are used to account for the contribution of phenomena
occuring at subgrid scales. This approach can be a computationally efficient way to improve the physical realism of
simulations without needing to increase their spatial resolution (which can be very expensive).

Using predefined parameterizations

pyqg implements a number of predefined parameterizations (see Parameterizations for a full list). You can use these
in a pyqg.Model as follows:

param = pyqg.BackscatterBiharmonic(smag_constant=0.1, back_constant=0.95)
model = pyqg.QGModel(parameterization=param)

Note that parameterizations either target the tendencies of potential vorticity 𝑞 or the velocities 𝑢 and 𝑣. If you have two
parameterizations with the same target, you can add them together, even as a weighted sum. If they have different targets,
you can still use both, but they must be passed in as separate q_parameterization and uv_parameterization
arguments:
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param1 = pyqg.Smagorinsky() # targets uv
param2 = pyqg.ZannaBolton2020() # also targets uv
good_model = pyqg.QGModel(parameterization=param1 + 0.25*param2) # this works!

param3 = pyqg.BackscatterBiharmonic() # targets q
bad_model = pyqg.QGModel(parameterization=param1 + param3) # this will error!

# do this instead to combine parameterizations of different types
good_model2 = pyqg.QGModel(uv_parameterization=param1, q_parameterization=param3)

Defining new parameterizations

To define a new parameterization, you have two options. The first is just to define a Python function which takes a
single argument (the model) and returns either a single real array of size (nz, ny, nz) if it targets 𝑞 or an iterable of
two such arrays if it targets 𝑢 and 𝑣. This can then be passed to the model using the type-specific arguments:

# These parameterizations just add random noise, but with the right shape
noisy_q_param = lambda model: np.random.normal(size=model.q.shape)
noisy_uv_param = lambda model: np.random.normal(size=(2, *model.u.shape))

model1 = pyqg.QGModel(q_parameterization=noisy_q_param)
model2 = pyqg.QGModel(uv_parameterization=noisy_uv_param)

The second (and usually better) option is to define a subclass of pyqg.UVParameterization or pyqg.
QParameterization with a new definition of __call__:

class NoisyQParam(pyqg.QParameterization):
def __init__(self, scale):

self.scale = scale

def __call__(self, model):
return np.random.normal(size=model.q.shape) * self.scale

If you would like to make your parameterization available for others to test, please consider Contributing your param-
eterization to pyqg.

Parameterization diagnostics

Parameterizations of potential vorticity affect how energy is redistributed across scales according to the following
formula: (︂

𝜕𝐸(𝑘, 𝑙)

𝜕𝑡

)︂param

= − 1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R
[︁
𝜓*
𝑛

ˆ̇𝑞param
𝑛

]︁
,

The contribution of velocity parameterizations is analogous, except with ˆ̇𝑞param replaced by the curl of the velocity
tendency terms in spectral space. This term is made available in the diagnostics under paramspec.

In the case of a quasi-geostrophic model, the paramspec can be decomposed into two terms which represent its con-
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tribution to the kinetic and available potential energy tendencies:(︂
𝜕KE(𝑘, 𝑙)

𝜕𝑡

)︂param

=
1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R
[︁
𝜅2𝜓*

𝑛

(︁
Aˆ̇qparam

)︁
𝑛

]︁
(1.2)

(︂
𝜕APE(𝑘, 𝑙)

𝜕𝑡

)︂param

= − 1

𝐻

𝑁∑︁
𝑛=1

𝐻𝑛R
[︁
𝜓*
𝑛

(︁
SAˆ̇qparam

)︁
𝑛

]︁
(1.3)

where A(k) = (S− 𝜅2I)−1 and S is the model’s stretching matrix (more details here).

We make these terms available in the diagnostics under paramspec_KEflux and paramspec_APEflux, respectively.
When comparing the KE and APE fluxes of parameterized and unparameterized models, it may make sense to do so
after adding these terms to the raw KEflux and APEflux values.

Evaluating subgrid parameterizations

As many parameterizations attempt to account for missing physics due to low resolution, we provide several helper
methods for evaluating them.

Assume we have run a high-resolution model and both parameterized and unparameterized low-resolution models. We
provide helper methods to compare the root mean squared difference in their resulting diagnostics (properly adding,
e.g., KEflux and paramspec_KEflux), and even compute similarity metrics describing how much closer each of the
parameterized model’s diagnostics are to those of the high-resolution model as compared to those of the low-resolution
model:

from pyqg.diagnostic tools import diagnostic_differences, diagnostic_similarities

m_highres = pyqg.QGModel(nx=256)
m_lowres = pyqg.QGModel(nx=64)
m_param = pyqg.QGModel(nx=64, parameterization=pyqg.BackscatterBiharmonic())
[m.run() for m in [m_highres, m_lowres, m_param]]

highres_lowres_diffs = diagnostic_differences(m_highres, m_lowres)
highres_param_diffs = diagnostic_differences(m_highres, m_param)

param_similarity = diagnostic_similarities(m_param,
target=m_highres,
baseline=m_lowres)

The target does not need to be a high-resolution model, but regardless, similarity scores near 1 indicate that the
parameterization’s diagnostics are much closer to the target than the baseline, while scores below 0 indicate they
are further from the target than the baseline.

Contributing your parameterization to pyqg

We encourage contributions of parameterizations to pyqg for others to test. To add yours, please:

1. Define it as a subclass of pyqg.UVParameterization or pyqg.QParameterization as described above.

2. Add the code either to pyqg/parameterizations.py or a new file imported in pyqg/__init__.py.

3. Write a test ensuring it can be evaluated for the appropriate model classes.

4. Create or update a notebook in docs/examples to illustrate its effects or compare it to other parameterizations
(optional but encouraged).

5. Create a pull request following the normal development workflow.
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1.3 Examples

1.3.1 Two-Layer QG Model Example

Here is a quick overview of how to use the two-layer model. See the :py:class:pyqg.QGModel api documentation for
further details.

First import numpy, matplotlib, and pyqg:

[1]: import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline

import pyqg
from pyqg import diagnostic_tools as tools

Initialize and Run the Model

Here we set up a model which will run for 10 years and start averaging after 5 years. There are lots of parameters that
can be specified as keyword arguments but we are just using the defaults.

[2]: year = 24*60*60*360.
m = pyqg.QGModel(tmax=10*year, twrite=10000, tavestart=5*year)
m.run()

INFO: Logger initialized
INFO: Step: 10000, Time: 7.20e+07, KE: 4.14e-04, CFL: 0.090
INFO: Step: 20000, Time: 1.44e+08, KE: 4.58e-04, CFL: 0.084
INFO: Step: 30000, Time: 2.16e+08, KE: 4.35e-04, CFL: 0.109
INFO: Step: 40000, Time: 2.88e+08, KE: 4.85e-04, CFL: 0.080

Convert Model Outpt to an xarray Dataset

Model variables, coordinates, attributes, and metadata can be stored conveniently as an xarray Dataset. (Notice that
this feature requires xarray to be installed on your machine. See here for installation instructions: http://xarray.pydata.
org/en/stable/getting-started-guide/installing.html#instructions)

[3]: m_ds = m.to_dataset().isel(time=-1)
m_ds

[3]: <xarray.Dataset>
Dimensions: (lev: 2, y: 64, x: 64, l: 64, k: 33, lev_mid: 1)
Coordinates:

time float64 3.11e+08
* lev (lev) int64 1 2
* lev_mid (lev_mid) float64 1.5
* x (x) float64 7.812e+03 2.344e+04 ... 9.766e+05 9.922e+05
* y (y) float64 7.812e+03 2.344e+04 ... 9.766e+05 9.922e+05
* l (l) float64 0.0 6.283e-06 ... -1.257e-05 -6.283e-06
* k (k) float64 0.0 6.283e-06 ... 0.0001948 0.0002011

Data variables: (12/32)
q (lev, y, x) float64 -1.822e-06 -1.356e-06 ... -1.087e-06

(continues on next page)
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(continued from previous page)

u (lev, y, x) float64 -0.05977 -0.04566 ... -0.001317
v (lev, y, x) float64 0.04194 0.0462 ... 0.00118 0.009001
ufull (lev, y, x) float64 -0.03477 -0.02066 ... -0.001317
vfull (lev, y, x) float64 0.04194 0.0462 ... 0.00118 0.009001
qh (lev, l, k) complex128 (0.002324483338567505+0j) ... (...
... ...
ENSgenspec (l, k) float64 0.0 -3.458e-24 ... 7.51e-52 -3.186e-61
ENSfrictionspec (l, k) float64 0.0 -7.479e-24 ... -2.395e-50 -7.94e-60
APEgenspec (l, k) float64 0.0 -7.781e-16 ... 1.69e-43 -7.168e-53
APEflux (l, k) float64 -0.0 -7.048e-16 ... 1.097e-28 2.951e-33
KEflux (l, k) float64 0.0 -4.226e-15 ... 5.188e-27 9.932e-32
APEgen float64 6.336e-11

Attributes: (12/23)
pyqg:beta: 1.5e-11
pyqg:delta: 0.25
pyqg:del2: 0.8
pyqg:dt: 7200.0
pyqg:filterfac: 23.6
pyqg:L: 1000000.0
... ...
pyqg:tc: 43200
pyqg:tmax: 311040000.0
pyqg:twrite: 10000
pyqg:W: 1000000.0
title: pyqg: Python Quasigeostrophic Model
reference: https://pyqg.readthedocs.io/en/latest/index.html

Visualize Output

Let’s assign a new data variable, q_upper, as the upper layer PV anomaly. We access the PV values in the Dataset
as m_ds.q, which has two levels and a corresponding background PV gradient, m_ds.Qy.

[4]: m_ds['q_upper'] = m_ds.q.isel(lev=0) + m_ds.Qy.isel(lev=0)*m_ds.y
m_ds['q_upper'].attrs = {'long_name': 'upper layer PV anomaly'}
m_ds.q_upper.plot.contourf(levels=18, cmap='RdBu_r');
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Plot Diagnostics

The model automatically accumulates averages of certain diagnostics. We can find out what diagnostics are available
by calling

[5]: m.describe_diagnostics()

NAME | DESCRIPTION
--------------------------------------------------------------------------------
APEflux | spectral flux of available potential energy
APEgen | total available potential energy generation
APEgenspec | the spectrum of the rate of generation of available potential energy
Dissspec | Spectral contribution of filter dissipation to total energy
EKE | mean eddy kinetic energy
EKEdiss | total energy dissipation by bottom drag
ENSDissspec | Spectral contribution of filter dissipation to barotropic enstrophy
ENSflux | barotropic enstrophy flux
ENSfrictionspec | the spectrum of the rate of dissipation of barotropic enstrophy due to␣
→˓bottom friction
ENSgenspec | the spectrum of the rate of generation of barotropic enstrophy
Ensspec | enstrophy spectrum
KEflux | spectral flux of kinetic energy
KEfrictionspec | total energy dissipation spectrum by bottom drag
KEspec | kinetic energy spectrum
entspec | barotropic enstrophy spectrum
paramspec | Spectral contribution of subgrid parameterization (if present)
paramspec_APEflux | total additional APE flux due to subgrid parameterization
paramspec_KEflux | total additional KE flux due to subgrid parameterization

To look at the wavenumber energy spectrum, we plot the KEspec diagnostic. (Note that summing along the l-axis, as
in this example, does not give us a true isotropic wavenumber spectrum.)
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[6]: kr, kespec_upper = tools.calc_ispec(m, m_ds.KEspec.isel(lev=0).data)
_, kespec_lower = tools.calc_ispec(m, m_ds.KEspec.isel(lev=1).data)

plt.loglog(kr, kespec_upper, 'b.-', label='upper layer')
plt.loglog(kr, kespec_lower, 'g.-', label='lower layer')
plt.legend(loc='lower left')
plt.ylim([1e-14,1e-8])
plt.xlabel(r'k (m$^{-1}$)'); plt.grid()
plt.title('Kinetic Energy Spectrum');

We can also plot the spectral fluxes of energy and enstrophy.

[8]: kr, APEgenspec = tools.calc_ispec(m, m_ds.APEgenspec.data)
_, APEflux = tools.calc_ispec(m, m_ds.APEflux.data)
_, KEflux = tools.calc_ispec(m, m_ds.KEflux.data)
_, KEfrictionspec = tools.calc_ispec(m, m_ds.KEfrictionspec.data)
_, Dissspec = tools.calc_ispec(m, m_ds.Dissspec.data)

ebud = [ APEgenspec,
APEflux,
KEflux,
KEfrictionspec,
Dissspec]

ebud.append(-np.vstack(ebud).sum(axis=0))
ebud_labels = ['APE gen','APE flux','KE flux','Bottom drag','Diss.','Resid.']
[plt.semilogx(kr, term) for term in ebud]
plt.legend(ebud_labels, loc='upper right')
plt.xlabel(r'k (m$^{-1}$)'); plt.grid()
plt.title('Spectral Energy Transfer');
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[9]: _, ENSflux = tools.calc_ispec(m, m_ds.ENSflux.data.squeeze())
_, ENSgenspec = tools.calc_ispec(m, m_ds.ENSgenspec.data.squeeze())
_, ENSfrictionspec = tools.calc_ispec(m, m_ds.ENSfrictionspec.data.squeeze())
_, ENSDissspec = tools.calc_ispec(m, m_ds.ENSDissspec.data.squeeze())

ebud = [ ENSgenspec,
ENSflux,
ENSDissspec,
ENSfrictionspec]

ebud.append(-np.vstack(ebud).sum(axis=0))
ebud_labels = ['ENS gen','ENS flux div.','Dissipation','Friction','Resid.']
[plt.semilogx(kr, term) for term in ebud]
plt.legend(ebud_labels, loc='best')
plt.xlabel(r'k (m$^{-1}$)'); plt.grid()
plt.title('Spectral Enstrophy Transfer');
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1.3.2 Fully developed baroclinic instability of a 3-layer flow

[1]: import numpy as np
from numpy import pi
from matplotlib import pyplot as plt

import pyqg
from pyqg import diagnostic_tools as tools

Set up

[2]: L = 1000.e3 # length scale of box [m]
Ld = 15.e3 # deformation scale [m]
kd = 1./Ld # deformation wavenumber [m^-1]
Nx = 64 # number of grid points

H1 = 500. # layer 1 thickness [m]
H2 = 1750. # layer 2
H3 = 1750. # layer 3

U1 = 0.05 # layer 1 zonal velocity [m/s]
U2 = 0.025 # layer 2
U3 = 0.00 # layer 3

rho1 = 1025.
rho2 = 1025.275
rho3 = 1025.640

rek = 1.e-7 # linear bottom drag coeff. [s^-1]
f0 = 0.0001236812857687059 # coriolis param [s^-1]
beta = 1.2130692965249345e-11 # planetary vorticity gradient [m^-1 s^-1]

Ti = Ld/(abs(U1)) # estimate of most unstable e-folding time scale [s]
dt = Ti/200. # time-step [s]
tmax = 500*Ti # simulation time [s]

[3]: m = pyqg.LayeredModel(nx=Nx, nz=3, U = [U1,U2,U3],V = [0.,0.,0.],L=L,f=f0,beta=beta,
H = [H1,H2,H3], rho=[rho1,rho2,rho3],rek=rek,
dt=dt,tmax=tmax, twrite=10000, tavestart=Ti*200)

INFO: Logger initialized
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Initial condition

[4]: sig = 1.e-7
qi = sig*np.vstack([np.random.randn(m.nx,m.ny)[np.newaxis,],

np.random.randn(m.nx,m.ny)[np.newaxis,],
np.random.randn(m.nx,m.ny)[np.newaxis,]])

m.set_q(qi)

Run the model

[5]: m.run()

INFO: Step: 10000, Time: 1.50e+07, KE: 2.38e-04, CFL: 0.009
INFO: Step: 20000, Time: 3.00e+07, KE: 3.59e-02, CFL: 0.126
INFO: Step: 30000, Time: 4.50e+07, KE: 1.70e-01, CFL: 0.191
INFO: Step: 40000, Time: 6.00e+07, KE: 3.59e-01, CFL: 0.213
INFO: Step: 50000, Time: 7.50e+07, KE: 1.91e-01, CFL: 0.192
INFO: Step: 60000, Time: 9.00e+07, KE: 2.24e-01, CFL: 0.207
INFO: Step: 70000, Time: 1.05e+08, KE: 5.46e-01, CFL: 0.307
INFO: Step: 80000, Time: 1.20e+08, KE: 4.94e-01, CFL: 0.252
INFO: Step: 90000, Time: 1.35e+08, KE: 5.62e-01, CFL: 0.210
INFO: Step: 100000, Time: 1.50e+08, KE: 2.70e-01, CFL: 0.218

Xarray Dataset

Notice that the conversion to an xarray dataset requires xarray to be installed on your machine. See here for installation
instructions: http://xarray.pydata.org/en/stable/getting-started-guide/installing.html#instructions

[6]: ds = m.to_dataset()
ds

[6]: <xarray.Dataset>
Dimensions: (time: 1, lev: 3, y: 64, x: 64, l: 64, k: 33, lev_mid: 2)
Coordinates:
* time (time) float64 1.5e+08
* lev (lev) int64 1 2 3
* lev_mid (lev_mid) float64 1.5 2.5
* x (x) float64 7.812e+03 2.344e+04 ... 9.766e+05 9.922e+05
* y (y) float64 7.812e+03 2.344e+04 ... 9.766e+05 9.922e+05
* l (l) float64 0.0 6.283e-06 ... -1.257e-05 -6.283e-06
* k (k) float64 0.0 6.283e-06 ... 0.0001948 0.0002011

Data variables: (12/34)
q (time, lev, y, x) float64 0.0001383 ... -8.462e-06
u (time, lev, y, x) float64 0.0413 -0.05882 ... -0.1616
v (time, lev, y, x) float64 -0.357 -0.3027 ... -0.1369
ufull (time, lev, y, x) float64 0.0913 -0.008824 ... -0.1616
vfull (time, lev, y, x) float64 -0.357 -0.3027 ... -0.1369
qh (time, lev, l, k) complex128 (9.956089311189431e-06+0j...
... ...
APEgenspec (time, l, k) float64 0.0 1.724e-08 ... 5.211e-50
KEspec_modal (time, lev, l, k) float64 0.0 0.1616 ... 2.567e-41

(continues on next page)
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PEspec_modal (time, lev_mid, l, k) float64 0.0 0.02742 ... 9.974e-42
APEspec (time, l, k) float64 0.0 0.04085 ... 2.995e-32 1.117e-41
KEflux_div (time, l, k) float64 0.0 6.588e-09 ... 1.817e-24 3.27e-29
APEflux_div (time, l, k) float64 0.0 -1.748e-08 ... 1.176e-29

Attributes: (12/24)
pyqg:beta: 1.2130692965249345e-11
pyqg:delta: None
pyqg:dt: 1500.0
pyqg:filterfac: 23.6
pyqg:L: 1000000.0
pyqg:M: 4096
... ...
pyqg:tc: 100000
pyqg:tmax: 150000000.0
pyqg:twrite: 10000
pyqg:W: 1000000.0
title: pyqg: Python Quasigeostrophic Model
reference: https://pyqg.readthedocs.io/en/latest/index.html

Snapshots

[7]: PV = ds.q + ds.Qy * ds.y
PV['x'] = ds.x/ds.attrs['pyqg:rd']; PV.x.attrs = {'long_name': r'$x/L_d$'}
PV['y'] = ds.y/ds.attrs['pyqg:rd']; PV.y.attrs = {'long_name': r'$y/L_d$'}

[8]: plt.figure(figsize=(18,4))

plt.subplot(131)
PV.sel(lev=1).plot(cmap='Spectral_r')

plt.subplot(132)
PV.sel(lev=2).plot(cmap='Spectral_r')

plt.subplot(133)
PV.sel(lev=3).plot(cmap='Spectral_r');

pyqg has a built-in method that computes the vertical modes. It is stored as an attribute in the Dataset.

[9]: print(f"The first baroclinic deformation radius is {ds.attrs['pyqg:radii'][1]/1.e3} km")
print(f"The second baroclinic deformation radius is {ds.attrs['pyqg:radii'][2]/1.e3} km")
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The first baroclinic deformation radius is 15.375382785987185 km
The second baroclinic deformation radius is 7.975516271996243 km

We can project the solution onto the modes

[10]: pn = m.modal_projection(m.p)

[11]: plt.figure(figsize=(18,4))

plt.subplot(131)
plt.pcolormesh(m.x/m.rd, m.y/m.rd, pn[0]/(U1*Ld), cmap='Spectral_r', shading='auto')
plt.xlabel(r'$x/L_d$')
plt.ylabel(r'$y/L_d$')
plt.colorbar()
plt.title('Barotropic streamfunction')

plt.subplot(132)
plt.pcolormesh(m.x/m.rd, m.y/m.rd, pn[1]/(U1*Ld), cmap='Spectral_r', shading='auto')
plt.xlabel(r'$x/L_d$')
plt.ylabel(r'$y/L_d$')
plt.colorbar()
plt.title('1st baroclinic streamfunction')

plt.subplot(133)
plt.pcolormesh(m.x/m.rd, m.y/m.rd, pn[2]/(U1*Ld), cmap='Spectral_r', shading='auto')
plt.xlabel(r'$x/L_d$')
plt.ylabel(r'$y/L_d$')
plt.colorbar()
plt.title('2nd baroclinic streamfunction');

Diagnostics

[12]: kr, kespec_1 = tools.calc_ispec(m, ds.KEspec.sel(lev=1).data.squeeze())
_ , kespec_2 = tools.calc_ispec(m, ds.KEspec.sel(lev=2).data.squeeze())
_ , kespec_3 = tools.calc_ispec(m, ds.KEspec.sel(lev=3).data.squeeze())

plt.loglog(kr, kespec_1, '.-' )
plt.loglog(kr, kespec_2, '.-' )
plt.loglog(kr, kespec_3, '.-' )

(continues on next page)
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plt.legend(['layer 1','layer 2', 'layer 3'], loc='lower left')
plt.ylim([1e-12,4e-6]);
plt.xlabel(r'k (m$^{-1}$)'); plt.grid()
plt.title('Kinetic Energy Spectrum');

By default the modal KE and PE spectra are also calculated

[13]: kr, modal_kespec_1 = tools.calc_ispec(m, ds.KEspec_modal.sel(lev=1).data.squeeze())
_, modal_kespec_2 = tools.calc_ispec(m, ds.KEspec_modal.sel(lev=2).data.squeeze())
_, modal_kespec_3 = tools.calc_ispec(m, ds.KEspec_modal.sel(lev=3).data.squeeze())

_, modal_pespec_2 = tools.calc_ispec(m, ds.PEspec_modal.sel(lev_mid=1.5).data.squeeze())
_, modal_pespec_3 = tools.calc_ispec(m, ds.PEspec_modal.sel(lev_mid=2.5).data.squeeze())

[14]: plt.figure(figsize=(15,5))

plt.subplot(121)
plt.loglog(kr, modal_kespec_1, '.-')
plt.loglog(kr, modal_kespec_2, '.-')
plt.loglog(kr, modal_kespec_3, '.-')

plt.legend(['barotropic ','1st baroclinic', '2nd baroclinic'], loc='lower left')
plt.ylim([1e-12,1e-5]);
plt.xlabel(r'k (m$^{-1}$)'); plt.grid()
plt.title('Kinetic Energy Spectra');

plt.subplot(122)
plt.loglog(kr, modal_pespec_2, '.-')
plt.loglog(kr, modal_pespec_3, '.-')

plt.legend(['1st baroclinic', '2nd baroclinic'], loc='lower left')
plt.ylim([1e-12,1e-5]);

(continues on next page)
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plt.xlabel(r'k (m$^{-1}$)'); plt.grid()
plt.title('Potential Energy Spectra');

[15]: _, APEgenspec = tools.calc_ispec(m, ds.APEgenspec.data.squeeze())
_, APEflux = tools.calc_ispec(m, ds.APEflux_div.data.squeeze())
_, KEflux = tools.calc_ispec(m, ds.KEflux_div.data.squeeze())
_, Dissspec = tools.calc_ispec(m, ds.Dissspec.squeeze().data)
_, KEfrictionspec = tools.calc_ispec(m, ds.KEfrictionspec.squeeze().data)

ebud = [ APEgenspec,
APEflux,
KEflux,
Dissspec,
KEfrictionspec]

ebud.append(-np.vstack(ebud).sum(axis=0))
ebud_labels = ['APE gen','APE flux div.','KE flux div.','Dissipation','Friction','Resid.
→˓']
[plt.semilogx(kr, term) for term in ebud]
plt.legend(ebud_labels, loc='lower left', ncol=2)
plt.xlabel(r'k (m$^{-1}$)'); plt.grid()
plt.title('Spectral Energy Transfers');
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[16]: _, ENSflux = tools.calc_ispec(m, ds.ENSflux.data.squeeze())
_, ENSgenspec = tools.calc_ispec(m, ds.ENSgenspec.data.squeeze())
_, ENSfrictionspec = tools.calc_ispec(m, ds.ENSfrictionspec.data.squeeze())
_, ENSDissspec = tools.calc_ispec(m, ds.ENSDissspec.data.squeeze())

ebud = [ ENSgenspec,
ENSflux,
ENSDissspec,
ENSfrictionspec]

ebud.append(-np.vstack(ebud).sum(axis=0))
ebud_labels = ['ENS gen','ENS flux div.','Dissipation','Friction','Resid.']
[plt.semilogx(kr, term) for term in ebud]
plt.legend(ebud_labels, loc='lower left')
plt.xlabel(r'k (m$^{-1}$)'); plt.grid()
plt.title('Spectral Enstrophy Transfer');
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The dynamics here is similar to the reference experiment of Larichev & Held (1995). The APE generated through
baroclinic instability is fluxed towards deformation length scales, where it is converted into KE. The KE the experiments
and inverse tranfer, cascading up to the scale of the domain. The mechanical bottom drag essentially removes the large
scale KE.

1.3.3 Barotropic Model

Here will will use pyqg to reproduce the results of the paper: J. C. Mcwilliams (1984). The emergence of isolated
coherent vortices in turbulent flow. Journal of Fluid Mechanics, 146, pp 21-43 doi:10.1017/S0022112084001750

[23]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pyqg

McWilliams performed freely-evolving 2D turbulence (𝑅𝑑 = ∞, 𝛽 = 0) experiments on a 2𝜋 × 2𝜋 periodic box.

[24]: # create the model object
m = pyqg.BTModel(L=2.*np.pi, nx=256,

beta=0., H=1., rek=0., rd=None,
tmax=40, dt=0.001, taveint=1,
ntd=4)

# in this example we used ntd=4, four threads
# if your machine has more (or fewer) cores available, you could try changing it

Initial condition

The initial condition is random, with a prescribed spectrum

|𝜓|2 = 𝐴𝜅−1

[︂
1 +

(︁𝜅
6

)︁4]︂−1

,

where 𝜅 is the wavenumber magnitude. The constant A is determined so that the initial energy is 𝐾𝐸 = 0.5.

[3]: # generate McWilliams 84 IC condition

fk = m.wv != 0
ckappa = np.zeros_like(m.wv2)
ckappa[fk] = np.sqrt( m.wv2[fk]*(1. + (m.wv2[fk]/36.)**2) )**-1

nhx,nhy = m.wv2.shape

Pi_hat = np.random.randn(nhx,nhy)*ckappa +1j*np.random.randn(nhx,nhy)*ckappa

Pi = m.ifft( Pi_hat[np.newaxis,:,:] )
Pi = Pi - Pi.mean()
Pi_hat = m.fft( Pi )
KEaux = m.spec_var( m.wv*Pi_hat )

pih = ( Pi_hat/np.sqrt(KEaux) )
qih = -m.wv2*pih
qi = m.ifft(qih)
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[4]: # initialize the model with that initial condition
m.set_q(qi)

[5]: # define a quick function for plotting and visualize the initial condition
def plot_q(m, qmax=40):

fig, ax = plt.subplots()
pc = ax.pcolormesh(m.x,m.y,m.q.squeeze(), cmap='RdBu_r')
pc.set_clim([-qmax, qmax])
ax.set_xlim([0, 2*np.pi])
ax.set_ylim([0, 2*np.pi]);
ax.set_aspect(1)
plt.colorbar(pc)
plt.title('Time = %g' % m.t)
plt.show()

plot_q(m)

Runing the model

Here we demonstrate how to use the run_with_snapshots feature to periodically stop the model and perform some
action (in this case, visualization).

[6]: for _ in m.run_with_snapshots(tsnapstart=0, tsnapint=10):
plot_q(m)

t= 1, tc= 1000: cfl=0.104428, ke=0.496432737
t= 1, tc= 2000: cfl=0.110651, ke=0.495084591
t= 2, tc= 3000: cfl=0.101385, ke=0.494349348
t= 3, tc= 4000: cfl=0.113319, ke=0.493862801
t= 5, tc= 5000: cfl=0.112978, ke=0.493521035
t= 6, tc= 6000: cfl=0.101435, ke=0.493292057
t= 7, tc= 7000: cfl=0.092574, ke=0.493114415
t= 8, tc= 8000: cfl=0.096229, ke=0.492987232
t= 9, tc= 9000: cfl=0.097924, ke=0.492899499
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t= 9, tc= 10000: cfl=0.103278, ke=0.492830631
t= 10, tc= 11000: cfl=0.102686, ke=0.492775849
t= 11, tc= 12000: cfl=0.099865, ke=0.492726644
t= 12, tc= 13000: cfl=0.110933, ke=0.492679673
t= 13, tc= 14000: cfl=0.102899, ke=0.492648562
t= 14, tc= 15000: cfl=0.102052, ke=0.492622263
t= 15, tc= 16000: cfl=0.106399, ke=0.492595449
t= 16, tc= 17000: cfl=0.122508, ke=0.492569708
t= 17, tc= 18000: cfl=0.120618, ke=0.492507272
t= 19, tc= 19000: cfl=0.103734, ke=0.492474633

t= 20, tc= 20000: cfl=0.113210, ke=0.492452605
t= 21, tc= 21000: cfl=0.095246, ke=0.492439588
t= 22, tc= 22000: cfl=0.092449, ke=0.492429553
t= 23, tc= 23000: cfl=0.115412, ke=0.492419773
t= 24, tc= 24000: cfl=0.125958, ke=0.492407434
t= 25, tc= 25000: cfl=0.098588, ke=0.492396021
t= 26, tc= 26000: cfl=0.103689, ke=0.492387002

(continues on next page)
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t= 27, tc= 27000: cfl=0.103893, ke=0.492379606
t= 28, tc= 28000: cfl=0.108417, ke=0.492371082
t= 29, tc= 29000: cfl=0.112969, ke=0.492361675

t= 30, tc= 30000: cfl=0.127132, ke=0.492352666
t= 31, tc= 31000: cfl=0.122900, ke=0.492331664
t= 32, tc= 32000: cfl=0.110486, ke=0.492317502
t= 33, tc= 33000: cfl=0.101901, ke=0.492302225
t= 34, tc= 34000: cfl=0.099996, ke=0.492294952
t= 35, tc= 35000: cfl=0.106513, ke=0.492290743
t= 36, tc= 36000: cfl=0.121426, ke=0.492286228
t= 37, tc= 37000: cfl=0.125573, ke=0.492283246
t= 38, tc= 38000: cfl=0.108975, ke=0.492280378
t= 38, tc= 39000: cfl=0.110105, ke=0.492278000

t= 39, tc= 40000: cfl=0.104794, ke=0.492275760

The genius of McWilliams (1984) was that he showed that the initial random vorticity field organizes itself into strong
coherent vortices. This is true in significant part of the parameter space. This was previously suspected but unproven,
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mainly because people did not have computer resources to run the simulation long enough. Thirty years later we can
perform such simulations in a couple of minutes on a laptop!

Also, note that the energy is nearly conserved, as it should be, and this is a nice test of the model.

Plotting spectra

[7]: energy = m.get_diagnostic('KEspec')
enstrophy = m.get_diagnostic('Ensspec')

[11]: # this makes it easy to calculate an isotropic spectrum
from pyqg import diagnostic_tools as tools
kr, energy_iso = tools.calc_ispec(m,energy.squeeze())
_, enstrophy_iso = tools.calc_ispec(m,enstrophy.squeeze())

[17]: ks = np.array([3.,80])
es = 5*ks**-4
plt.loglog(kr,energy_iso)
plt.loglog(ks,es,'k--')
plt.text(2.5,.0001,r'$k^{-4}$',fontsize=20)
plt.ylim(1.e-10,1.e0)
plt.xlabel('wavenumber')
plt.title('Energy Spectrum')

[17]: <matplotlib.text.Text at 0x10c1b1a90>

[20]: ks = np.array([3.,80])
es = 5*ks**(-5./3)
plt.loglog(kr,enstrophy_iso)
plt.loglog(ks,es,'k--')
plt.text(5.5,.01,r'$k^{-5/3}$',fontsize=20)
plt.ylim(1.e-3,1.e0)
plt.xlabel('wavenumber')
plt.title('Enstrophy Spectrum')
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[20]: <matplotlib.text.Text at 0x10b5d2f50>

[ ]:

1.3.4 Surface Quasi-Geostrophic (SQG) Model

Here will will use pyqg to reproduce the results of the paper: I. M. Held, R. T. Pierrehumbert, S. T. Garner and
K. L. Swanson (1985). Surface quasi-geostrophic dynamics. Journal of Fluid Mechanics, 282, pp 1-20 [doi:: http:
//dx.doi.org/10.1017/S0022112095000012)

import matplotlib.pyplot as plt
import numpy as np
from numpy import pi
%matplotlib inline
from pyqg import sqg_model

Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 21 days
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 21 days
Vendor: Continuum Analytics, Inc.
Package: mkl
Message: trial mode expires in 21 days

Surface quasi-geostrophy (SQG) is a relatively simple model that describes surface intensified flows due to buoyancy.
One of it’s advantages is that it only has two spatial dimensions but describes a three-dimensional solution.

If we define 𝑏 to be the buoyancy, then the evolution equation for buoyancy at each the top and bottom surface is

𝜕𝑡𝑏+ 𝐽(𝜓, 𝑏) = 0.
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The invertibility relation between the streamfunction, 𝜓, and the buoyancy, 𝑏, is hydrostatic balance

𝑏 = 𝜕𝑧𝜓.

Using the fact that the Potential Vorticity is exactly zero in the interior of the domain and that the domain is semi-infinite,
yields that the inversion in Fourier space is,

𝑏̂ =
𝜅𝑁

𝑓0
𝜓.

Held et al. studied several different cases, the first of which was the nonlinear evolution of an elliptical vortex. There
are several other cases that they studied and people are welcome to adapt the code to study those as well. But here we
focus on this first example for pedagogical reasons.

# create the model object
year = 1.
m = sqg_model.SQGModel(L=2.*pi,nx=512, tmax = 26.005,

beta = 0., Nb = 1., H = 1., f_0 = 0., dt = 0.005,
taveint=1, twrite=400, ntd=4)

# in this example we used ntd=4, four threads
# if your machine has more (or fewer) cores available, you could try changing it

INFO: Logger initialized
INFO: Kernel initialized

Initial condition

The initial condition is an elliptical vortex,

𝑏 = 0.01 exp(−(𝑥2 + (4𝑦)2)/(𝐿/𝑦)2

where 𝐿 is the length scale of the vortex in the 𝑥 direction. The amplitude is 0.01, which sets the strength and speed of
the vortex. The aspect ratio in this example is 4 and gives rise to an instability. If you reduce this ratio sufficiently you
will find that it is stable. Why don’t you try it and see for yourself?

# Choose ICs from Held et al. (1995)
# case i) Elliptical vortex
x = np.linspace(m.dx/2,2*np.pi,m.nx) - np.pi
y = np.linspace(m.dy/2,2*np.pi,m.ny) - np.pi
x,y = np.meshgrid(x,y)

qi = -np.exp(-(x**2 + (4.0*y)**2)/(m.L/6.0)**2)

# initialize the model with that initial condition
m.set_q(qi[np.newaxis,:,:])

# Plot the ICs
plt.rcParams['image.cmap'] = 'RdBu'
plt.clf()
p1 = plt.imshow(m.q.squeeze() + m.beta * m.y)
plt.title('b(x,y,t=0)')
plt.colorbar()
plt.clim([-1, 0])

(continues on next page)
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plt.xticks([])
plt.yticks([])
plt.show()

/Users/crocha/anaconda/lib/python2.7/site-packages/matplotlib/collections.py:590:␣
→˓FutureWarning: elementwise comparison failed; returning scalar instead, but in the␣
→˓future will perform elementwise comparison
if self._edgecolors == str('face'):

Runing the model

Here we demonstrate how to use the run_with_snapshots feature to periodically stop the model and perform some
action (in this case, visualization).

for snapshot in m.run_with_snapshots(tsnapstart=0., tsnapint=400*m.dt):
plt.clf()
p1 = plt.imshow(m.q.squeeze() + m.beta * m.y)
#plt.clim([-30., 30.])
plt.title('t='+str(m.t))
plt.colorbar()
plt.clim([-1, 0])
plt.xticks([])
plt.yticks([])
plt.show()

INFO: Step: 400, Time: 2.00e+00, KE: 5.21e-03, CFL: 0.245
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INFO: Step: 800, Time: 4.00e+00, KE: 5.21e-03, CFL: 0.239

INFO: Step: 1200, Time: 6.00e+00, KE: 5.21e-03, CFL: 0.261
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INFO: Step: 1600, Time: 8.00e+00, KE: 5.21e-03, CFL: 0.273

INFO: Step: 2000, Time: 1.00e+01, KE: 5.21e-03, CFL: 0.267
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INFO: Step: 2400, Time: 1.20e+01, KE: 5.20e-03, CFL: 0.247

INFO: Step: 2800, Time: 1.40e+01, KE: 5.20e-03, CFL: 0.254
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INFO: Step: 3200, Time: 1.60e+01, KE: 5.20e-03, CFL: 0.259

INFO: Step: 3600, Time: 1.80e+01, KE: 5.19e-03, CFL: 0.256
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INFO: Step: 4000, Time: 2.00e+01, KE: 5.19e-03, CFL: 0.259

INFO: Step: 4400, Time: 2.20e+01, KE: 5.19e-03, CFL: 0.259
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INFO: Step: 4800, Time: 2.40e+01, KE: 5.18e-03, CFL: 0.242

INFO: Step: 5200, Time: 2.60e+01, KE: 5.17e-03, CFL: 0.263
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Compare these results with Figure 2 of the paper. In this simulation you see that as the cyclone rotates it develops thin
arms that spread outwards and become unstable because of their strong shear. This is an excellent example of how
smaller scale vortices can be generated from a mesoscale vortex.

You can modify this to run it for longer time to generate the analogue of their Figure 3.

1.3.5 Built-in linear stability analysis

[11]: import numpy as np
from numpy import pi
import matplotlib.pyplot as plt
%matplotlib inline

import pyqg

[12]: m = pyqg.LayeredModel(nx=256, nz = 2, U = [.01, -.01], V = [0., 0.], H = [1., 1.],
L=2*pi,beta=1.5, rd=1./20., rek=0.05, f=1.,delta=1.)

INFO: Logger initialized
INFO: Kernel initialized

To perform linear stability analysis, we simply call pyqg’s built-in method stability_analysis:

[3]: evals,evecs = m.stability_analysis()

The eigenvalues are stored in omg, and the eigenctors in evec. For plotting purposes, we use fftshift to reorder the
entries

[4]: evals = np.fft.fftshift(evals.imag,axes=(0,))

k,l = m.k*m.radii[1], np.fft.fftshift(m.l,axes=(0,))*m.radii[1]

It is also useful to analyze the fasted-growing mode:

[5]: argmax = evals[m.Ny/2,:].argmax()
evec = np.fft.fftshift(evecs,axes=(1))[:,m.Ny/2,argmax]

(continues on next page)
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kmax = k[m.Ny/2,argmax]

x = np.linspace(0,4.*pi/kmax,100)
mag, phase = np.abs(evec), np.arctan2(evec.imag,evec.real)

By default, the stability analysis above is performed without bottom friction, but the stability method also supports
bottom friction:

[6]: evals_fric, evecs_fric = m.stability_analysis(bottom_friction=True)
evals_fric = np.fft.fftshift(evals_fric.imag,axes=(0,))

argmax = evals_fric[m.Ny/2,:].argmax()
evec_fric = np.fft.fftshift(evecs_fric,axes=(1))[:,m.Ny/2,argmax]
kmax_fric = k[m.Ny/2,argmax]

mag_fric, phase_fric = np.abs(evec_fric), np.arctan2(evec_fric.imag,evec_fric.real)

Plotting growth rates

[10]: plt.figure(figsize=(14,4))
plt.subplot(121)
plt.contour(k,l,evals,colors='k')
plt.pcolormesh(k,l,evals,cmap='Blues')
plt.colorbar()
plt.xlim(0,2.); plt.ylim(-2.,2.)
plt.clim([0.,.1])
plt.xlabel(r'$k \, L_d$'); plt.ylabel(r'$l \, L_d$')
plt.title('without bottom friction')

plt.subplot(122)
plt.contour(k,l,evals_fric,colors='k')
plt.pcolormesh(k,l,evals_fric,cmap='Blues')
plt.colorbar()
plt.xlim(0,2.); plt.ylim(-2.,2.)
plt.clim([0.,.1])
plt.xlabel(r'$k \, L_d$'); plt.ylabel(r'$l \, L_d$')
plt.title('with bottom friction')

[10]: <matplotlib.text.Text at 0x11539e290>
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[8]: plt.figure(figsize=(8,4))
plt.plot(k[m.Ny/2,:],evals[m.Ny/2,:],'b',label='without bottom friction')
plt.plot(k[m.Ny/2,:],evals_fric[m.Ny/2,:],'b--',label='with bottom friction')
plt.xlim(0.,2.)
plt.legend()
plt.xlabel(r'$k\,L_d$')
plt.ylabel(r'Growth rate')

[8]: <matplotlib.text.Text at 0x10f9731d0>
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Plotting the wavestructure of the most unstable modes

[9]: plt.figure(figsize=(12,5))
plt.plot(x,mag[0]*np.cos(kmax*x + phase[0]),'b',label='Layer 1')
plt.plot(x,mag[1]*np.cos(kmax*x + phase[1]),'g',label='Layer 2')
plt.plot(x,mag_fric[0]*np.cos(kmax_fric*x + phase_fric[0]),'b--')
plt.plot(x,mag_fric[1]*np.cos(kmax_fric*x + phase_fric[1]),'g--')
plt.legend(loc=8)
plt.xlabel(r'$x/L_d$'); plt.ylabel(r'$y/L_d$')

[9]: <matplotlib.text.Text at 0x114c6d410>

This calculation shows the classic phase-tilting of baroclinic unstable waves (e.g. Vallis 2006 ).

[ ]:

1.3.6 Parameterizations

In this notebook, we’ll review tools for defining, running, and comparing subgrid parameterizations.

[1]: import numpy as np
import pandas as pd
pd.set_option('display.max_columns', 10)
import pyqg
import pyqg.diagnostic_tools
import matplotlib.pyplot as plt
%matplotlib inline
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Run baseline high- and low-resolution models

To illustrate the effect of parameterizations, we’ll run two baseline models:

• a low-resolution model without parameterizations at nx=64 resolution (where ∆𝑥 is larger than the deformation
radius 𝑟𝑑, preventing the model from fully resolving eddies),

• a high-resolution model at nx=256 resolution (where ∆𝑥 is ~4x finer than the deformation radius, so eddies can
be almost fully resolved).

[2]: %%time
year = 24*60*60*360.
base_kwargs = dict(dt=3600., tmax=5*year, tavestart=2.5*year, twrite=25000)

low_res = pyqg.QGModel(nx=64, **base_kwargs)
low_res.run()

INFO: Logger initialized
INFO: Step: 25000, Time: 9.00e+07, KE: 4.14e-04, CFL: 0.042

CPU times: user 14.3 s, sys: 23.6 s, total: 38 s
Wall time: 10.8 s

[3]: %%time
high_res = pyqg.QGModel(nx=256, **base_kwargs)
high_res.run()

INFO: Logger initialized
INFO: Step: 25000, Time: 9.00e+07, KE: 4.62e-04, CFL: 0.217

CPU times: user 3min 47s, sys: 5min 43s, total: 9min 30s
Wall time: 2min 55s

Run Smagorinsky and backscatter parameterizations

Now we’ll run two types of parameterization: one from Smagorinsky 1963 which models an effective eddy viscosity
from subgrid stress, and one adapted from Jansen and Held 2014 and Jansen et al. 2015, which reinjects a fraction of
the energy dissipated by Smagorinsky back into larger scales:

[4]: def run_parameterized_model(p):
model = pyqg.QGModel(nx=64, parameterization=p, **base_kwargs)
model.run()
return model

[5]: %%time
smagorinsky = run_parameterized_model(

pyqg.parameterizations.Smagorinsky(constant=0.08))

INFO: Logger initialized
INFO: Step: 25000, Time: 9.00e+07, KE: 3.37e-04, CFL: 0.043

CPU times: user 39.3 s, sys: 1min, total: 1min 39s
Wall time: 30.3 s
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[8]: %%time
backscatter = run_parameterized_model(

pyqg.parameterizations.BackscatterBiharmonic(smag_constant=0.08, back_constant=1.1))

INFO: Logger initialized
INFO: Step: 25000, Time: 9.00e+07, KE: 5.35e-04, CFL: 0.048

CPU times: user 35.9 s, sys: 57.8 s, total: 1min 33s
Wall time: 27.5 s

Note how these are slightly slower than the baseline low-resolution model, but much faster than the high-resolution
model.

See the parameterizations API section and code for examples of how these parameterizations are defined!

Compute similarity metrics between parameterized and high-resolution simulations

To assist with evaluating the effects of parameterizations, we include helpers for computing similarity metrics between
model diagnostics. Similarity metrics quantify the percentage closer a diagnostic is to high resolution than low resolu-
tion; values greater than 0 indicate improvement over low resolution (with 1 being the maximum), while values below
0 indicate worsening. We can compute these for all diagnostics for all four simulations:

[9]: def label_for(sim):
return f"nx={sim.nx}, {sim.parameterization or 'unparameterized'}"

sims = [high_res, backscatter, low_res, smagorinsky]

pd.DataFrame.from_dict([
dict(Simulation=label_for(sim),

**pyqg.diagnostic_tools.diagnostic_similarities(sim, high_res, low_res))
for sim in sims])

[9]: Simulation Ensspec1 Ensspec2 \
0 nx=256, unparameterized 1.000000 1.000000
1 nx=64, BackscatterBiharmonic(Cs=0.08, Cb=1.1) 0.617871 0.595677
2 nx=64, unparameterized 0.000000 0.000000
3 nx=64, Smagorinsky(Cs=0.08) -0.049632 0.476905

KEspec1 KEspec2 ... ENSfrictionspec APEgenspec APEflux KEflux \
0 1.000000 1.000000 ... 1.000000 1.000000 1.000000 1.000000
1 0.719966 0.776835 ... 0.444769 0.222930 0.571082 0.448418
2 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000
3 -0.242329 -0.269631 ... -0.161524 0.069705 -0.171567 -0.296460

APEgen
0 1.000000
1 0.015557
2 0.000000
3 0.206204

[4 rows x 19 columns]

Note that the high-resolution and low-resolution models themselves have similarity scores of 1 and 0 by definition.
In this case, the backscatter parameterization is consistently closer to high-resolution than low-resolution, while the
Smagorinsky is consistently further.
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Let’s plot some of the actual curves underlying these metrics to get a better sense:

[19]: def plot_kwargs_for(sim):
kw = dict(label=label_for(sim).replace('Biharmonic',''))
kw['ls'] = (':' if sim.uv_parameterization else ('--' if sim.q_parameterization else

→˓'-'))
kw['lw'] = (4 if sim.nx==256 else 3)
return kw

plt.figure(figsize=(16,6))
plt.rcParams.update({'font.size': 16})

plt.subplot(121, title="KE spectrum")
for sim in sims:

plt.loglog(
*pyqg.diagnostic_tools.calc_ispec(sim, sim.get_diagnostic('KEspec').sum(0)),
**plot_kwargs_for(sim))

plt.ylabel("[$m^2 s^{-2}$]")
plt.xlabel("[$m^{-1}$]")
plt.ylim(1e-2,2e2)
plt.xlim(1e-5, 2e-4)
plt.legend(loc='lower left')

plt.subplot(122, title="Enstrophy spectrum")
for sim in sims:

plt.loglog(
*pyqg.diagnostic_tools.calc_ispec(sim, sim.get_diagnostic('Ensspec').sum(0)),
**plot_kwargs_for(sim))

plt.ylabel("[$s^{-2}$]")
plt.xlabel("[$m^{-1}$]")
plt.ylim(1e-8,2e-6)
plt.xlim(1e-5, 2e-4)
plt.tight_layout()

The backscatter model, though low-resolution, has energy and enstrophy spectra that more closely resemble those of
the high-resolution model.
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1.4 API

1.4.1 Base Model Class

This is the base class from which all other models inherit. All of these initialization arguments are available to all of
the other model types. This class is not called directly.

class pyqg.Model(nz=1, nx=64, ny=None, L=1000000.0, W=None, dt=7200.0, twrite=1000.0,
tmax=1576800000.0, tavestart=315360000.0, taveint=86400.0, useAB2=False,
rek=5.787e-07, filterfac=23.6, f=None, g=9.81, q_parameterization=None,
uv_parameterization=None, parameterization=None, diagnostics_list='all', ntd=1,
log_level=1, logfile=None)

A generic pseudo-spectral inversion model.

Attributes

nx, ny [int] Number of real space grid points in the x, y directions (cython)

nk, nl [int] Number of spectral space grid points in the k, l directions (cython)

nz [int] Number of vertical levels (cython)

kk, ll [real array] Zonal and meridional wavenumbers (nk) (cython)

a [real array] inversion matrix (nk, nk, nl, nk) (cython)

q [real array] Potential vorticity in real space (nz, ny, nx) (cython)

qh [complex array] Potential vorticity in spectral space (nk, nl, nk) (cython)

ph [complex array] Streamfunction in spectral space (nk, nl, nk) (cython)

u, v [real array] Zonal and meridional velocity anomalies in real space (nz, ny, nx) (cython)

Ubg [real array] Background zonal velocity (nk) (cython)

Qy [real array] Background potential vorticity gradient (nk) (cython)

ufull, vfull [real arrays] Zonal and meridional full velocities in real space (nz, ny, nx) (cython)

uh, vh [complex arrays] Velocity anomaly components in spectral space (nk, nl, nk) (cython)

rek [float] Linear drag in lower layer (cython)

t [float] Model time (cython)

tc [int] Model timestep (cython)

dt [float] Numerical timestep (cython)

L, W [float] Domain length in x and y directions

filterfac [float] Amplitdue of the spectral spherical filter

twrite [int] Interval for cfl writeout (units: number of timesteps)

tmax [float] Total time of integration (units: model time)

tavestart [float] Start time for averaging (units: model time)

tsnapstart [float] Start time for snapshot writeout (units: model time)

taveint [float] Time interval for accumulation of diagnostic averages. (units: model time)

tsnapint [float] Time interval for snapshots (units: model time)

ntd [int] Number of threads to use. Should not exceed the number of cores on your machine.
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pmodes [real array] Vertical pressure modes (unitless)

radii [real array] Deformation radii (units: model length)

q_parameterization [function or pyqg.Parameterization] Optional Parameterization object
or function which takes the model as input and returns a numpy array of shape (nz, ny,
nx) to be added to 𝜕𝑡𝑞 before stepping forward. This can be used to implement subgrid
forcing parameterizations.

uv_parameterization [function or pyqg.Parameterization] Optional Parameterization ob-
ject or function which takes the model as input and returns a tuple of two numpy arrays,
each of shape (nz, ny, nx), to be added to the zonal and meridional velocity derivatives
(respectively) at each timestep (by adding their curl to 𝜕𝑡𝑞). This can also be used to im-
plemented subgrid forcing parameterizations, but expressed in terms of velocity rather than
potential vorticity.

Note: All of the test cases use nx==ny. Expect bugs if you choose these parameters to be different.

Note: All time intervals will be rounded to nearest dt interval.

Parameters

nx [int] Number of grid points in the x direction.

ny [int] Number of grid points in the y direction (default: nx).

L [number] Domain length in x direction. Units: meters.

W Domain width in y direction. Units: meters (default: L).

rek [number] linear drag in lower layer. Units: seconds -1.

filterfac [number] amplitdue of the spectral spherical filter (originally 18.4, later changed to
23.6).

dt [number] Numerical timstep. Units: seconds.

twrite [int] Interval for cfl writeout. Units: number of timesteps.

tmax [number] Total time of integration. Units: seconds.

tavestart [number] Start time for averaging. Units: seconds.

tsnapstart [number] Start time for snapshot writeout. Units: seconds.

taveint [number] Time interval for accumulation of diagnostic averages. Units: seconds. (For
performance purposes, averaging does not have to occur every timestep)

tsnapint [number] Time interval for snapshots. Units: seconds.

ntd [int] Number of threads to use. Should not exceed the number of cores on your machine.

q_parameterization [function or pyqg.Parameterization] Optional Parameterization object
or function which takes the model as input and returns a numpy array of shape (nz, ny,
nx) to be added to 𝜕𝑡𝑞 before stepping forward. This can be used to implement subgrid
forcing parameterizations.

uv_parameterization [function or pyqg.Parameterization] Optional Parameterization ob-
ject or function which takes the model as input and returns a tuple of two numpy arrays,
each of shape (nz, ny, nx), to be added to the zonal and meridional velocity derivatives
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(respectively) at each timestep (by adding their curl to 𝜕𝑡𝑞). This can also be used to im-
plemented subgrid forcing parameterizations, but expressed in terms of velocity rather than
potential vorticity.

parameterization [pyqg.Parameterization] An explicit Parameterization object represent-
ing either a velocity or potential vorticity parameterization, whose type will be inferred.

describe_diagnostics()
Print a human-readable summary of the available diagnostics.

modal_projection(p, forward=True)
Performs a field p into modal amplitudes pn using the basis [pmodes]. The inverse transform calculates p
from pn

property parameterization
Return the model’s parameterization if present (either in terms of PV or velocity, warning if there are both).

Returns

parameterization [pyqg.Parameterization or function]

run()
Run the model forward without stopping until the end.

run_with_snapshots(tsnapstart=0.0, tsnapint=432000.0)
Run the model forward, yielding to user code at specified intervals.

Parameters

tsnapstart [int] The timestep at which to begin yielding.

tstapint [int] The interval at which to yield.

spec_var(ph)
compute variance of p from Fourier coefficients ph

stability_analysis(bottom_friction=False)

Performs the baroclinic linear instability analysis given given the base state velocity :math: (U, V) and
the stretching matrix :math: S:

𝐴Φ = 𝜔𝐵Φ,

where

𝐴 = 𝐵(𝑈𝑘 + 𝑉 𝑙) + 𝐼(𝑘𝑄𝑦 − 𝑙𝑄𝑥) + 1𝑗𝛿𝑁𝑁𝑟𝑒𝑘𝐼𝜅
2

where 𝛿𝑁𝑁 = [0, 0, . . . , 0, 1],

and

𝐵 = 𝑆 − 𝐼𝜅2.

The eigenstructure is

Φ

and the eigenvalue is

‘𝜔‘

The growth rate is Im{𝜔}.
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Parameters

bottom_friction: optional inclusion linear bottom drag in the linear stability calculation
(default is False, as if :math: r_{ek} = 0)

Returns

omega: complex array The eigenvalues with largest complex part (units: inverse model
time)

phi: complex array The eigenvectors associated associated with omega (unitless)

to_dataset()
Convert outputs from model to an xarray dataset

Returns

ds [xarray.Dataset]

vertical_modes()
Calculate standard vertical modes. Simply the eigenvectors of the stretching matrix S

1.4.2 Specific Model Types

These are the actual models which are run.

class pyqg.QGModel(beta=1.5e-11, rd=15000.0, delta=0.25, H1=500, U1=0.025, U2=0.0, **kwargs)
Two layer quasigeostrophic model.

This model is meant to representflows driven by baroclinic instabilty of a base-state shear 𝑈1 − 𝑈2. The upper
and lower layer potential vorticity anomalies 𝑞1 and 𝑞2 are

𝑞1 = ∇2𝜓1 + 𝐹1(𝜓2 − 𝜓1)

𝑞2 = ∇2𝜓2 + 𝐹2(𝜓1 − 𝜓2)

with

𝐹1 ≡ 𝑘2𝑑
1 + 𝛿2

𝐹2 ≡ 𝛿𝐹1 .

The layer depth ratio is given by 𝛿 = 𝐻1/𝐻2. The total depth is 𝐻 = 𝐻1 +𝐻2.

The background potential vorticity gradients are

𝛽1 = 𝛽 + 𝐹1(𝑈1 − 𝑈2)

𝛽2 = 𝛽 − 𝐹2(𝑈1 − 𝑈2) .

The evolution equations for 𝑞1 and 𝑞2 are

𝜕𝑡 𝑞1 + 𝐽(𝜓1 , 𝑞1) + 𝛽1 𝜓1𝑥 = ssd
𝜕𝑡 𝑞2 + 𝐽(𝜓2 , 𝑞2) + 𝛽2 𝜓2𝑥 = −𝑟𝑒𝑘∇2𝜓2 + ssd .

where ssd represents small-scale dissipation and 𝑟𝑒𝑘 is the Ekman friction parameter.

Parameters

beta [number] Gradient of coriolis parameter. Units: meters -1 seconds -1

rek [number] Linear drag in lower layer. Units: seconds -1

rd [number] Deformation radius. Units: meters.
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delta [number] Layer thickness ratio (H1/H2)

U1 [number] Upper layer flow. Units: meters seconds -1

U2 [number] Lower layer flow. Units: meters seconds -1

set_U1U2(U1, U2)
Set background zonal flow.

Parameters

U1 [number] Upper layer flow. Units: meters seconds -1

U2 [number] Lower layer flow. Units: meters seconds -1

set_q1q2(q1, q2, check=False)
Set upper and lower layer PV anomalies.

Parameters

q1 [array-like] Upper layer PV anomaly in spatial coordinates.

q1 [array-like] Lower layer PV anomaly in spatial coordinates.

class pyqg.LayeredModel(beta=1.5e-11, nz=3, rd=15000.0, f=0.0001236812857687059, H=None, U=None,
V=None, rho=None, delta=None, **kwargs)

Layered quasigeostrophic model.

This model is meant to represent flows driven by baroclinic instabilty of a base-state shear. The potential vorticity
anomalies qi are related to the streamfunction psii through

𝑞𝑖 = ∇2𝜓𝑖 +
𝑓20
𝐻𝑖

(︂
𝜓𝑖−1 − 𝜓𝑖

𝑔′𝑖−1

− 𝜓𝑖 − 𝜓𝑖+1

𝑔′𝑖

)︂
, 𝑖 = 2,N − 1 ,

𝑞1 = ∇2𝜓1 +
𝑓20
𝐻1

(︂
𝜓2 − 𝜓1

𝑔′1

)︂
, 𝑖 = 1 ,

𝑞N = ∇2𝜓N +
𝑓20
𝐻N

(︂
𝜓N−1 − 𝜓N

𝑔′N

)︂
+

𝑓0
𝐻N

ℎ𝑏 , 𝑖 = N ,

where the reduced gravity, or buoyancy jump, is

𝑔′𝑖 ≡ 𝑔
𝜌𝑖+1 − 𝜌𝑖

𝜌𝑖
.

The evolution equations are

𝑞𝑖𝑡 + J (𝜓𝑖 , 𝑞𝑖) + Q𝑦𝜓𝑖𝑥 − Q𝑥𝜓𝑖𝑦 = ssd − 𝑟𝑒𝑘𝛿𝑖N∇2𝜓𝑖 , 𝑖 = 1,N ,

where the mean potential vorticy gradients are

Q𝑥 = SV ,

and

Q𝑦 = 𝛽 I − SU ,

where S is the stretching matrix, I is the identity matrix, and the background velocity is

V⃗(𝑧) = (U,V).

Parameters

nz [integer number] Number of layers (> 1)
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beta [number] Gradient of coriolis parameter. Units: meters -1 seconds -1

rd [number] Deformation radius. Units: meters. Only necessary for the two-layer (nz=2) case.

delta [number] Layer thickness ratio (H1/H2). Only necessary for the two-layer (nz=2) case.
Unitless.

U [list of size nz] Base state zonal velocity. Units: meters seconds -1

V [array of size nz] Base state meridional velocity. Units: meters seconds -1

H [array of size nz] Layer thickness. Units: meters

rho: array of size nz. Layer density. Units: kilograms meters -3

class pyqg.BTModel(beta=0.0, rd=0.0, H=1.0, U=0.0, **kwargs)
Single-layer (barotropic) quasigeostrophic model. This class can represent both pure two-dimensional flow and
also single reduced-gravity layers with deformation radius rd.

The equivalent-barotropic quasigeostrophic evolution equations is

𝜕𝑡𝑞 + 𝐽(𝜓, 𝑞) + 𝛽𝜓𝑥 = ssd

The potential vorticity anomaly is

𝑞 = ∇2𝜓 − 𝜅2𝑑𝜓

Parameters

beta [number, optional] Gradient of coriolis parameter. Units: meters -1 seconds -1

rd [number, optional] Deformation radius. Units: meters.

U [number, optional] Upper layer flow. Units: meters seconds -1.

set_U(U)
Set background zonal flow.

Parameters

U [number] Upper layer flow. Units: meters seconds -1.

class pyqg.SQGModel(beta=0.0, Nb=1.0, f_0=1.0, H=1.0, U=0.0, **kwargs)
Surface quasigeostrophic model.

Parameters

beta [number] Gradient of coriolis parameter. Units: meters -1 seconds -1

Nb [number] Buoyancy frequency. Units: seconds -1.

U [number] Background zonal flow. Units: meters seconds -1.

set_U(U)
Set background zonal flow
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1.4.3 Lagrangian Particles

class pyqg.LagrangianParticleArray2D(x0, y0, periodic_in_x=False, periodic_in_y=False, xmin=- inf,
xmax=inf, ymin=- inf, ymax=inf, particle_dtype='f8')

A class for keeping track of a set of lagrangian particles in two-dimensional space. Tries to be fast.

Parameters

x0, y0 [array-like] Two arrays (same size) representing the particle initial positions.

periodic_in_x [bool] Whether the domain wraps in the x direction.

periodic_in_y [bool] Whether the domain ‘wraps’ in the y direction.

xmin, xmax [numbers] Maximum and minimum values of x coordinate

ymin, ymax [numbers] Maximum and minimum values of y coordinate

particle_dtype [dtype] Data type to use for particles

step_forward_with_function(uv0fun, uv1fun, dt)
Advance particles using a function to determine u and v.

Parameters

uv0fun [function] Called like uv0fun(x,y). Should return the velocity field u, v at time t.

uv1fun(x,y) [function] Called like uv1fun(x,y). Should return the velocity field u, v at
time t + dt.

dt [number] Timestep.

class pyqg.GriddedLagrangianParticleArray2D(x0, y0, Nx, Ny, grid_type='A', **kwargs)
Lagrangian particles with velocities given on a regular cartesian grid.

Parameters

x0, y0 [array-like] Two arrays (same size) representing the particle initial positions.

Nx, Ny: int Number of grid points in the x and y directions

grid_type: {‘A’} Arakawa grid type specifying velocity positions.

interpolate_gridded_scalar(x, y, c, order=1, pad=1, offset=0)
Interpolate gridded scalar C to points x,y.

Parameters

x, y [array-like] Points at which to interpolate

c [array-like] The scalar, assumed to be defined on the grid.

order [int] Order of interpolation

pad [int] Number of pad cells added

offset [int] ???

Returns

ci [array-like] The interpolated scalar

step_forward_with_gridded_uv(U0, V0, U1, V1, dt, order=1)
Advance particles using a gridded velocity field. Because of the Runga-Kutta timestepping, we need two
velocity fields at different times.

Parameters
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U0, V0 [array-like] Gridded velocity fields at time t - dt.

U1, V1 [array-like] Gridded velocity fields at time t.

dt [number] Timestep.

order [int] Order of interpolation.

1.4.4 Diagnostic Tools

Utility functions for pyqg model data.

pyqg.diagnostic_tools.calc_ispec(model, _var_dens, averaging=True, truncate=True,
nd_wavenumber=False, nfactor=1)

Compute isotropic spectrum phr from 2D spectrum of variable signal2d such that signal2d.var() = phr.sum() *
(kr[1] - kr[0]).

Parameters

model [pyqg.Model instance] The model object from which var_dens originates

var_dens [squared modulus of fourier coefficients like this:] np.abs(signal2d_fft)**2/m.M**2

averaging: If True, spectral density is estimated with averaging over circles, otherwise
summation is used and Parseval identity holds

truncate: If True, maximum wavenumber corresponds to inner circle in Fourier space,
otherwise - outer circle

nd_wavenumber: If True, wavenumber is nondimensional: minimum wavenumber is 1 and
corresponds to domain length/width, otherwise - wavenumber is dimensional [m^-1]

nfactor: width of the bin in sqrt(dk^2+dl^2) units

Returns

kr [array] isotropic wavenumber

phr [array] isotropic spectrum

pyqg.diagnostic_tools.diagnostic_differences(m1, m2, reduction='rmse', instantaneous=False)
Compute a dictionary of differences in the diagnostics of two models at possibly different resolutions (e.g. for
quantifying the effects of parameterizations). Applies normalization/isotropization to certain diagnostics before
comparing them and skips others. Also computes differences for each vertical layer separately.

Parameters

m1 [pyqg.Model instance] The first model to compare

m2 [pyqg.Model instance] The second model to compare

reduction [string or function] A function that takes two arrays of diagnostics and computes a
distance metric. Defaults to the root mean squared difference (‘rmse’).

instantaneous [boolean] If true, compute difference metrics for the instantaneous values of a
diagnostic, rather than its time average. Defaults to false.

Returns

diffs [dict] A dictionary of diagnostic name => distance. If the diagnostic is defined over multiple
layers, separate keys are included with an appended z index.
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pyqg.diagnostic_tools.diagnostic_similarities(model, target, baseline, **kw)
Like diagnostic_differences, but returning a dictionary of similarity scores between negative infinity and 1 which
quantify how much closer the diagnostics of a given model are to a target with respect to a baseline. Scores
approach 1 when the distance between the model and the target is small compared to the baseline and are negative
when that distance is greater.

Parameters

model [pyqg.Model instance] The model for which we want to compute similiarity scores (e.g.
a parameterized low resolution model)

target [pyqg.Model instance] The target model (e.g. a high resolution model)

baseline [pyqg.Model instance] The baseline against which we check for improvement or degra-
dation (e.g. an unparameterized low resolution model)

Returns

sims [dict] A dictionary of diagnostic name => similarity. If the diagnostic is defined over mul-
tiple layers, separate keys are included with an appended z index.

pyqg.diagnostic_tools.spec_sum(ph2)
Compute total spectral sum of the real spectral quantity``ph^2``.

Parameters

model [pyqg.Model instance] The model object from which ph originates

ph2 [real array] The field on which to compute the sum

Returns

var_dens [float] The sum of ph2

pyqg.diagnostic_tools.spec_var(model, ph)
Compute variance of p from Fourier coefficients ph.

Parameters

model [pyqg.Model instance] The model object from which ph originates

ph [complex array] The field on which to compute the variance

Returns

var_dens [float] The variance of ph

1.4.5 Parameterizations

class pyqg.Parameterization
A generic class representing a subgrid parameterization. Inherit from this class, 𝑈𝑉 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛, or
𝑄𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 to define a new parameterization.

abstract __call__(m)
Call the parameterization given a pyqg.Model. Override this function in the subclass when defining a new
parameterization.

Parameters

m [Model] The model for which we are evaluating the parameterization.

Returns
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forcing [real array or tuple] The forcing associated with the model. If the model has been
initialized with this parameterization as its q_parameterization, this should be an array
of shape (nz, ny, nx). For uv_parameterization, this should be a tuple of two such
arrays or a single array of shape (2, nz, ny, nx).

abstract property parameterization_type
Whether the parameterization applies to velocity (in which case this property should return
"uv_parameterization") or potential vorticity (in which case this property should return
"q_parameterization"). If you inherit from UVParameterization or QParameterization, this will
be defined automatically.

Returns

parameterization_type [string] Either "uv_parameterization" or
"q_parameterization", depending on how the output should be interpreted.

__add__(other)
Add two parameterizations (returning a new object).

Parameters

other [Parameterization] The parameterization to add to this one.

Returns

sum [Parameterization] The sum of the two parameterizations.

__mul__(constant)
Multiply a parameterization by a constant (returning a new object).

Parameters

constant [number] Multiplicative factor for scaling the parameterization.

Returns

product [Parameterization] The parameterization times the constant.

class pyqg.parameterizations.UVParameterization
A generic class representing a subgrid parameterization in terms of velocity. Inherit from this to define a new
velocity parameterization.

class pyqg.parameterizations.QParameterization
A generic class representing a subgrid parameterization in terms of potential vorticity. Inherit from this to define
a new potential vorticity parameterization.

class pyqg.parameterizations.Smagorinsky(constant=0.1)
Velocity parameterization from Smagorinsky 1963.

This parameterization assumes that due to subgrid stress, there is an effective eddy viscosity

𝜈 = (𝐶𝑆∆)2
√︁

2(𝑆2
𝑥,𝑥 + 𝑆2

𝑦,𝑦 + 2𝑆2
𝑥,𝑦)

which leads to updated velocity tendencies Π𝑖, 𝑖 ∈ {1, 2} corresponding to 𝑥 and 𝑦 respectively (equation is the
same in each layer):

Π𝑖 = 2𝜕𝑖(𝜈𝑆𝑖,𝑖) + 𝜕2−𝑖(𝜈𝑆𝑖,2−𝑖)

where 𝐶𝑆 is a tunable Smagorinsky constant, ∆ is the grid spacing, and

𝑆𝑖,𝑗 =
1

2
(𝜕𝑖u𝑗 + 𝜕𝑗u𝑖)

Parameters
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constant [number] Smagorinsky constant 𝐶𝑆 . Defaults to 0.1.

class pyqg.parameterizations.BackscatterBiharmonic(smag_constant=0.08, back_constant=0.99,
eps=1e-32)

PV parameterization based on Jansen and Held 2014 and Jansen et al. 2015 (adapted by Pavel Perezhogin). As-
sumes that a configurable fraction of Smagorinsky dissipation is scattered back to larger scales in an energetically
consistent way.

Parameters

smag_constant [number] Smagorinsky constant𝐶𝑆 for the dissipative model. Defaults to 0.08.

back_constant [number] Backscatter constant 𝐶𝐵 describing the fraction of Smagorinsky-
dissipated energy which should be scattered back to larger scales. Defaults to 0.99. Normally
should be less than 1, but larger values may still be stable, e.g. due to additional dissipation
in the model from numerical filtering.

eps [number] Small constant to add to the denominator of the backscatter formula to prevent
division by zero errors. Defaults to 1e-32.

class pyqg.parameterizations.ZannaBolton2020(constant=- 46761284)
Velocity parameterization derived from equation discovery by Zanna and Bolton 2020 (Eq. 6).

Parameters

constant [number] Scaling constant 𝜅𝐵𝐶 . Units: meters -2. Defaults to ≈ −4.68× 107, a value
obtained by empirically minimizing squared error with respect to the subgrid forcing that
results from applying the filtering method of Guan et al. 2022 to a two-layer QGModel with
default parameters.

1.5 Development

1.5.1 Team

• Malte Jansen, University of Chicago

• Ryan Abernathey, Columbia University / LDEO

• Cesar Rocha, Woods Hole Oceanographic Institution

• Francis Poulin, University of Waterloo

1.5.2 History

The numerical approach of pyqg was originally inspired by a MATLAB code by Glenn Flierl of MIT, who was a teacher
and mentor to Ryan and Malte. It would be hard to find anyone in the world who knows more about this sort of model
than Glenn. Malte implemented a python version of the two-layer model while at GFDL. In the summer of 2014,
while both were at the WHOI GFD Summer School, Ryan worked with Malte refactor the code into a proper python
package. Cesar got involved and brought pyfftw into the project. Ryan implemented a cython kernel. Cesar and Francis
implemented the barotropic and sqg models.
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1.5.3 Future

By adopting open-source best practices, we hope pyqg will grow into a widely used, community-based project. We
know that many other research groups have their own “in house” QG models. You can get involved by trying out the
model, filing issues if you find problems, and making pull requests if you make improvements.

1.5.4 Develpment Workflow

Anyone interested in helping to develop pyqg needs to create their own fork of our git repository. (Follow the github
forking instructions. You will need a github account.)

Clone your fork on your local machine.

$ git clone git@github.com:USERNAME/pyqg

(In the above, replace USERNAME with your github user name.)

Then set your fork to track the upstream pyqg repo.

$ cd pyqg
$ git remote add upstream git://github.com/pyqg/pyqg.git

You will want to periodically sync your master branch with the upstream master.

$ git fetch upstream
$ git rebase upstream/master

Never make any commits on your local master branch. Instead open a feature branch for every new development task.

$ git checkout -b cool_new_feature

(Replace cool_new_feature with an appropriate description of your feature.) At this point you work on your new feature,
using git add to add your changes. When your feature is complete and well tested, commit your changes

$ git commit -m 'did a bunch of great work'

and push your branch to github.

$ git push origin cool_new_feature

At this point, you go find your fork on github.com and create a pull request. Clearly describe what you have done in
the comments. If your pull request fixes an issue or adds a useful new feature, the team will gladly merge it.

After your pull request is merged, you can switch back to the master branch, rebase, and delete your feature branch.
You will find your new feature incorporated into pyqg.

$ git checkout master
$ git fetch upstream
$ git rebase upstream/master
$ git branch -d cool_new_feature
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1.5.5 Virtual Environment

This is how to create a virtual environment into which to test-install pyqg, install it, check the version, and tear down
the virtual environment.

$ conda create --yes -n test_env python=3.9 pip nose numpy cython scipy nose
$ conda install --yes -n test_env -c conda-forge pyfftw
$ source activate test_env
$ pip install pyqg
$ python -c 'import pyqg; print(pyqg.__version__);'
$ conda deactivate
$ conda env remove --yes -n test_env

1.5.6 Release Procedure

Once we are ready for a new release, someone needs to make a pull request which updates docs/whats-new.rst in
preparation for the new version. Then, you can simply create a new release in Github, adding a new tag for the new
version (following semver) and clicking “Auto-generate release notes” to summarize changes since the last release (with
further elaboration if necessary).

After the release is created, a new version should be published to pypi automatically.

However, before creating the release, it’s worth checking testpypi to ensure the new version works. You can do that by:

1. Verifying the most recent test publish succeeded (and is for the most recent commit)

2. Finding the corresponding pre-release version in pyqg’s TestPyPI history (should look like X.Y.Z.devN)

3. Installing that version locally as follows:

# Create a temporary directory with a fresh conda environment
$ mkdir ~/tmp
$ cd ~/tmp
$ conda create --yes -n test_env python=3.9 pip nose numpy cython scipy nose setuptools␣
→˓setuptools_scm
$ source activate test_env
$ pip install pyfftw # or install with conda-forge

# Install the latest pre-release version of pyqg
$ pip install -i https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple/
→˓ --no-cache-dir pyqg==X.Y.Z.devN

# Ensure this imports successfully and prints out the pre-release version (X.Y.Z.devN)
$ python -c 'import pyqg; print(pyqg.__version__);'

# Clean up and remove the test environment
$ conda deactivate
$ conda env remove --yes -n test_env

If this all works, then you should be ready to create the Github release.
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1.6 What’s New

1.6.1 v0.7.2 (19 May 2022)

• Temporarily removes subgrid forcing method

1.6.2 v0.7.1 (17 May 2022)

• Fixes packaging bug

1.6.3 v0.7.0 (16 May 2022)

• Allow parameterizations as first-class objects

• Add an initial library of parameterizations

• Add tools for comparing diagnostics

• Add a method for computing subgrid forcing

1.6.4 v0.6.0 (16 May 2022)

• Generalize definition of parameterization spectrum diagnostic

• Add enstrophy budget diagnostics

• Normalize and unitize all diagnostics

• Fix issues with calculating isotropic spectra

• Other refactors and bug fixes

1.6.5 v0.5.0 (23 Mar. 2022)

• Added support for online parameterizations

• Dropped support for Python 2.7

• Improvements to the development and release process

• Miscellaneous bug fixes

1.6.6 v0.4.0 (15 Sep. 2021)

• Refactored diagnostics

• Added xarray support

• Improvements to documentation and build process

• Miscellaneous bug fixes
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1.6.7 v0.3.0 (23 Nov. 2019)

• Revived development after long hiatus

• Reverted some experimental changes

• Several small bug fixes and documentation corrections

• Updated CI and doc build environments

• Adopted to versioneer for package versioning

1.6.8 v0.2.0 (27 April 2016)

Added compatibility with python 3.

Implemented linear baroclinic stability analysis method.

Implemented vertical mode methods and modal KE and PE spectra diagnostics.

Implemented multi-layer subclass.

Added new logger that leverages on built-in python logging.

Changed license to MIT.

1.6.9 v0.1.4 (22 Oct 2015)

Fixed bug related to the sign of advection terms (GH86).

Fixed bug in _calc_diagnostics (GH75). Now diagnostics start being averaged at tavestart.

1.6.10 v0.1.3 (4 Sept 2015)

Fixed bug in setup.py that caused openmp check to not work.

1.6.11 v0.1.2 (2 Sept 2015)

Package was not building properly through pip/pypi. Made some tiny changes to setup script. pypi forces you to
increment the version number.

1.6.12 v0.1.1 (2 Sept 2015)

A bug-fix release with no api or feature changes. The kernel has been modified to support numpy fft routines.

• Removed pyfftw depenency (GH53)

• Cleaning of examples
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1.6.13 v0.1 (1 Sept 2015)

Initial release.
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